This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Next, we calculate the value of C . (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem11.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| frrlem11.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | ||
| frrlem11.4 | ⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | ||
| frrlem12.5 | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | ||
| frrlem12.6 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) | ||
| frrlem12.7 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | ||
| Assertion | frrlem12 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem11.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | frrlem11.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 4 | frrlem11.4 | ⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | |
| 5 | frrlem12.5 | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | |
| 6 | frrlem12.6 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) | |
| 7 | frrlem12.7 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | |
| 8 | elun | ⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ) | |
| 9 | velsn | ⊢ ( 𝑤 ∈ { 𝑧 } ↔ 𝑤 = 𝑧 ) | |
| 10 | 9 | orbi2i | ⊢ ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 11 | 8 10 | bitri | ⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 12 | elinel2 | ⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑤 ∈ dom 𝐹 ) | |
| 13 | 1 | frrlem1 | ⊢ 𝐵 = { 𝑝 ∣ ∃ 𝑞 ( 𝑝 Fn 𝑞 ∧ ( 𝑞 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑞 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑞 ) ∧ ∀ 𝑤 ∈ 𝑞 ( 𝑝 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑝 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 14 | breq1 | ⊢ ( 𝑥 = 𝑞 → ( 𝑥 𝑔 𝑢 ↔ 𝑞 𝑔 𝑢 ) ) | |
| 15 | breq1 | ⊢ ( 𝑥 = 𝑞 → ( 𝑥 ℎ 𝑣 ↔ 𝑞 ℎ 𝑣 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑥 = 𝑞 → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ↔ ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) ) ) |
| 17 | 16 | imbi1d | ⊢ ( 𝑥 = 𝑞 → ( ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑥 = 𝑞 → ( ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ↔ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) ) ) |
| 19 | 18 3 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑞 𝑔 𝑢 ∧ 𝑞 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 20 | 13 2 19 | frrlem10 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 21 | 12 20 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 23 | 4 | fveq1i | ⊢ ( 𝐶 ‘ 𝑤 ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) |
| 24 | 1 2 3 | frrlem9 | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 25 | 24 | funresd | ⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑆 ) ) |
| 26 | dmres | ⊢ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) | |
| 27 | df-fn | ⊢ ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ 𝑆 ) ∧ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) ) ) | |
| 28 | 25 26 27 | sylanblrc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ) |
| 31 | vex | ⊢ 𝑧 ∈ V | |
| 32 | ovex | ⊢ ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V | |
| 33 | 31 32 | fnsn | ⊢ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } |
| 34 | 33 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) |
| 35 | eldifn | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) | |
| 36 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑧 ∈ dom 𝐹 ) | |
| 37 | 35 36 | nsyl | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) |
| 38 | disjsn | ⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( 𝑆 ∩ dom 𝐹 ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ) |
| 42 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) | |
| 43 | fvun1 | ⊢ ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) | |
| 44 | 30 34 41 42 43 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
| 45 | 23 44 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) ) |
| 46 | elinel1 | ⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → 𝑤 ∈ 𝑆 ) | |
| 47 | 46 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → 𝑤 ∈ 𝑆 ) |
| 48 | 47 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 49 | 45 48 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 50 | 1 2 3 4 | frrlem11 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 51 | fnfun | ⊢ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → Fun 𝐶 ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Fun 𝐶 ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Fun 𝐶 ) |
| 54 | ssun1 | ⊢ ( 𝐹 ↾ 𝑆 ) ⊆ ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | |
| 55 | 54 4 | sseqtrri | ⊢ ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 |
| 56 | 55 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 ) |
| 57 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) | |
| 58 | 57 7 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 59 | rspa | ⊢ ( ( ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | |
| 60 | 58 46 59 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 61 | 1 2 | frrlem8 | ⊢ ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 62 | 12 61 | syl | ⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 63 | 62 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 64 | 60 63 | ssind | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 65 | 64 26 | sseqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom ( 𝐹 ↾ 𝑆 ) ) |
| 66 | fun2ssres | ⊢ ( ( Fun 𝐶 ∧ ( 𝐹 ↾ 𝑆 ) ⊆ 𝐶 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom ( 𝐹 ↾ 𝑆 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) | |
| 67 | 53 56 65 66 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 68 | 60 | resabs1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 69 | 67 68 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 70 | 69 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑤 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 71 | 22 49 70 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 72 | 71 | ex | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 73 | 31 32 | fvsn | ⊢ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 74 | 4 | fveq1i | ⊢ ( 𝐶 ‘ 𝑧 ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) |
| 75 | 33 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ) |
| 76 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 77 | 76 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑧 ∈ { 𝑧 } ) |
| 78 | fvun2 | ⊢ ( ( ( 𝐹 ↾ 𝑆 ) Fn ( 𝑆 ∩ dom 𝐹 ) ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } Fn { 𝑧 } ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) | |
| 79 | 29 75 40 77 78 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
| 80 | 74 79 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑧 ) = ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ‘ 𝑧 ) ) |
| 81 | 4 | reseq1i | ⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 82 | resundir | ⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) | |
| 83 | 81 82 | eqtri | ⊢ ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 84 | 57 6 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 85 | 84 | resabs1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 86 | predfrirr | ⊢ ( 𝑅 Fr 𝐴 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 87 | 5 86 | syl | ⊢ ( 𝜑 → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 89 | ressnop0 | ⊢ ( ¬ 𝑧 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) → ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) | |
| 90 | 88 89 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ∅ ) |
| 91 | 85 90 | uneq12d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) ) |
| 92 | un0 | ⊢ ( ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ∅ ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 93 | 91 92 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( ( 𝐹 ↾ 𝑆 ) ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ∪ ( { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 94 | 83 93 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 95 | 94 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) = ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 96 | 73 80 95 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝐶 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 97 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝐶 ‘ 𝑤 ) = ( 𝐶 ‘ 𝑧 ) ) | |
| 98 | id | ⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) | |
| 99 | predeq3 | ⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 100 | 99 | reseq2d | ⊢ ( 𝑤 = 𝑧 → ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 101 | 98 100 | oveq12d | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) |
| 102 | 97 101 | eqeq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐶 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 103 | 96 102 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 = 𝑧 → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 104 | 72 103 | jaod | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 105 | 11 104 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 106 | 105 | 3impia | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |