This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. dom F is closed under predecessor classes. (Contributed by Scott Fenton, 6-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem5.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem5.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| Assertion | frrlem8 | ⊢ ( 𝑧 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem5.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem5.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | vex | ⊢ 𝑧 ∈ V | |
| 4 | 3 | eldm2 | ⊢ ( 𝑧 ∈ dom 𝐹 ↔ ∃ 𝑤 〈 𝑧 , 𝑤 〉 ∈ 𝐹 ) |
| 5 | 1 2 | frrlem5 | ⊢ 𝐹 = ∪ 𝐵 |
| 6 | 1 | frrlem1 | ⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } |
| 7 | 6 | unieqi | ⊢ ∪ 𝐵 = ∪ { 𝑔 ∣ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } |
| 8 | 5 7 | eqtri | ⊢ 𝐹 = ∪ { 𝑔 ∣ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } |
| 9 | 8 | eleq2i | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝐹 ↔ 〈 𝑧 , 𝑤 〉 ∈ ∪ { 𝑔 ∣ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } ) |
| 10 | eluniab | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ∪ { 𝑔 ∣ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) } ↔ ∃ 𝑔 ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) ) | |
| 11 | 9 10 | bitri | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝐹 ↔ ∃ 𝑔 ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) ) |
| 12 | simpr2r | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) | |
| 13 | vex | ⊢ 𝑤 ∈ V | |
| 14 | 3 13 | opeldm | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 → 𝑧 ∈ dom 𝑔 ) |
| 15 | 14 | adantr | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝑧 ∈ dom 𝑔 ) |
| 16 | simpr1 | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝑔 Fn 𝑎 ) | |
| 17 | 16 | fndmd | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → dom 𝑔 = 𝑎 ) |
| 18 | 15 17 | eleqtrd | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝑧 ∈ 𝑎 ) |
| 19 | rsp | ⊢ ( ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 → ( 𝑧 ∈ 𝑎 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ) | |
| 20 | 12 18 19 | sylc | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) |
| 21 | 20 17 | sseqtrrd | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝑔 ) |
| 22 | 19.8a | ⊢ ( ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) | |
| 23 | 6 | eqabri | ⊢ ( 𝑔 ∈ 𝐵 ↔ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) |
| 24 | 22 23 | sylibr | ⊢ ( ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → 𝑔 ∈ 𝐵 ) |
| 25 | 24 | adantl | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝑔 ∈ 𝐵 ) |
| 26 | elssuni | ⊢ ( 𝑔 ∈ 𝐵 → 𝑔 ⊆ ∪ 𝐵 ) | |
| 27 | 25 26 | syl | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝑔 ⊆ ∪ 𝐵 ) |
| 28 | 27 5 | sseqtrrdi | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → 𝑔 ⊆ 𝐹 ) |
| 29 | dmss | ⊢ ( 𝑔 ⊆ 𝐹 → dom 𝑔 ⊆ dom 𝐹 ) | |
| 30 | 28 29 | syl | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → dom 𝑔 ⊆ dom 𝐹 ) |
| 31 | 21 30 | sstrd | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 32 | 31 | expcom | ⊢ ( ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) ) |
| 33 | 32 | exlimiv | ⊢ ( ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) ) |
| 34 | 33 | impcom | ⊢ ( ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 35 | 34 | exlimiv | ⊢ ( ∃ 𝑔 ( 〈 𝑧 , 𝑤 〉 ∈ 𝑔 ∧ ∃ 𝑎 ( 𝑔 Fn 𝑎 ∧ ( 𝑎 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑎 ) ∧ ∀ 𝑧 ∈ 𝑎 ( 𝑔 ‘ 𝑧 ) = ( 𝑧 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 36 | 11 35 | sylbi | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑤 〈 𝑧 , 𝑤 〉 ∈ 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 38 | 4 37 | sylbi | ⊢ ( 𝑧 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |