This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Assuming that S is a subset of A and that z is R -minimal, then C is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| frrlem11.2 | |- F = frecs ( R , A , G ) |
||
| frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
||
| frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
||
| frrlem12.5 | |- ( ph -> R Fr A ) |
||
| frrlem12.6 | |- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
||
| frrlem12.7 | |- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
||
| frrlem13.8 | |- ( ( ph /\ z e. A ) -> S e. _V ) |
||
| frrlem13.9 | |- ( ( ph /\ z e. A ) -> S C_ A ) |
||
| Assertion | frrlem13 | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | |- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 2 | frrlem11.2 | |- F = frecs ( R , A , G ) |
|
| 3 | frrlem11.3 | |- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
|
| 4 | frrlem11.4 | |- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 5 | frrlem12.5 | |- ( ph -> R Fr A ) |
|
| 6 | frrlem12.6 | |- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
|
| 7 | frrlem12.7 | |- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
|
| 8 | frrlem13.8 | |- ( ( ph /\ z e. A ) -> S e. _V ) |
|
| 9 | frrlem13.9 | |- ( ( ph /\ z e. A ) -> S C_ A ) |
|
| 10 | eldifi | |- ( z e. ( A \ dom F ) -> z e. A ) |
|
| 11 | 10 8 | sylan2 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> S e. _V ) |
| 12 | 11 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> S e. _V ) |
| 13 | inex1g | |- ( S e. _V -> ( S i^i dom F ) e. _V ) |
|
| 14 | snex | |- { z } e. _V |
|
| 15 | unexg | |- ( ( ( S i^i dom F ) e. _V /\ { z } e. _V ) -> ( ( S i^i dom F ) u. { z } ) e. _V ) |
|
| 16 | 13 14 15 | sylancl | |- ( S e. _V -> ( ( S i^i dom F ) u. { z } ) e. _V ) |
| 17 | 12 16 | syl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( S i^i dom F ) u. { z } ) e. _V ) |
| 18 | 1 2 3 4 | frrlem11 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |
| 19 | 18 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C Fn ( ( S i^i dom F ) u. { z } ) ) |
| 20 | inss1 | |- ( S i^i dom F ) C_ S |
|
| 21 | 10 9 | sylan2 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> S C_ A ) |
| 22 | 21 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> S C_ A ) |
| 23 | 20 22 | sstrid | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( S i^i dom F ) C_ A ) |
| 24 | 10 | adantl | |- ( ( ph /\ z e. ( A \ dom F ) ) -> z e. A ) |
| 25 | 24 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> z e. A ) |
| 26 | 25 | snssd | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> { z } C_ A ) |
| 27 | 23 26 | unssd | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( S i^i dom F ) u. { z } ) C_ A ) |
| 28 | elun | |- ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( w e. ( S i^i dom F ) \/ w e. { z } ) ) |
|
| 29 | elin | |- ( w e. ( S i^i dom F ) <-> ( w e. S /\ w e. dom F ) ) |
|
| 30 | velsn | |- ( w e. { z } <-> w = z ) |
|
| 31 | 29 30 | orbi12i | |- ( ( w e. ( S i^i dom F ) \/ w e. { z } ) <-> ( ( w e. S /\ w e. dom F ) \/ w = z ) ) |
| 32 | 28 31 | bitri | |- ( w e. ( ( S i^i dom F ) u. { z } ) <-> ( ( w e. S /\ w e. dom F ) \/ w = z ) ) |
| 33 | 10 7 | sylan2 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
| 34 | 33 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
| 35 | rsp | |- ( A. w e. S Pred ( R , A , w ) C_ S -> ( w e. S -> Pred ( R , A , w ) C_ S ) ) |
|
| 36 | 34 35 | syl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( w e. S -> Pred ( R , A , w ) C_ S ) ) |
| 37 | 1 2 | frrlem8 | |- ( w e. dom F -> Pred ( R , A , w ) C_ dom F ) |
| 38 | 36 37 | anim12d1 | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( w e. S /\ w e. dom F ) -> ( Pred ( R , A , w ) C_ S /\ Pred ( R , A , w ) C_ dom F ) ) ) |
| 39 | ssin | |- ( ( Pred ( R , A , w ) C_ S /\ Pred ( R , A , w ) C_ dom F ) <-> Pred ( R , A , w ) C_ ( S i^i dom F ) ) |
|
| 40 | 38 39 | imbitrdi | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( w e. S /\ w e. dom F ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) |
| 41 | 10 6 | sylan2 | |- ( ( ph /\ z e. ( A \ dom F ) ) -> Pred ( R , A , z ) C_ S ) |
| 42 | 41 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> Pred ( R , A , z ) C_ S ) |
| 43 | preddif | |- Pred ( R , ( A \ dom F ) , z ) = ( Pred ( R , A , z ) \ Pred ( R , dom F , z ) ) |
|
| 44 | 43 | eqeq1i | |- ( Pred ( R , ( A \ dom F ) , z ) = (/) <-> ( Pred ( R , A , z ) \ Pred ( R , dom F , z ) ) = (/) ) |
| 45 | ssdif0 | |- ( Pred ( R , A , z ) C_ Pred ( R , dom F , z ) <-> ( Pred ( R , A , z ) \ Pred ( R , dom F , z ) ) = (/) ) |
|
| 46 | 44 45 | sylbb2 | |- ( Pred ( R , ( A \ dom F ) , z ) = (/) -> Pred ( R , A , z ) C_ Pred ( R , dom F , z ) ) |
| 47 | predss | |- Pred ( R , dom F , z ) C_ dom F |
|
| 48 | 46 47 | sstrdi | |- ( Pred ( R , ( A \ dom F ) , z ) = (/) -> Pred ( R , A , z ) C_ dom F ) |
| 49 | 48 | adantl | |- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> Pred ( R , A , z ) C_ dom F ) |
| 50 | 49 | adantl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> Pred ( R , A , z ) C_ dom F ) |
| 51 | 42 50 | ssind | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> Pred ( R , A , z ) C_ ( S i^i dom F ) ) |
| 52 | predeq3 | |- ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) |
|
| 53 | 52 | sseq1d | |- ( w = z -> ( Pred ( R , A , w ) C_ ( S i^i dom F ) <-> Pred ( R , A , z ) C_ ( S i^i dom F ) ) ) |
| 54 | 51 53 | syl5ibrcom | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( w = z -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) |
| 55 | 40 54 | jaod | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( ( w e. S /\ w e. dom F ) \/ w = z ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) |
| 56 | 32 55 | biimtrid | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( w e. ( ( S i^i dom F ) u. { z } ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) ) |
| 57 | 56 | imp | |- ( ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> Pred ( R , A , w ) C_ ( S i^i dom F ) ) |
| 58 | ssun1 | |- ( S i^i dom F ) C_ ( ( S i^i dom F ) u. { z } ) |
|
| 59 | 57 58 | sstrdi | |- ( ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) |
| 60 | 59 | ralrimiva | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) |
| 61 | 27 60 | jca | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) |
| 62 | 1 2 3 4 5 6 7 | frrlem12 | |- ( ( ph /\ z e. ( A \ dom F ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| 63 | 62 | 3expa | |- ( ( ( ph /\ z e. ( A \ dom F ) ) /\ w e. ( ( S i^i dom F ) u. { z } ) ) -> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| 64 | 63 | ralrimiva | |- ( ( ph /\ z e. ( A \ dom F ) ) -> A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| 65 | 64 | adantrr | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| 66 | fneq2 | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( C Fn t <-> C Fn ( ( S i^i dom F ) u. { z } ) ) ) |
|
| 67 | sseq1 | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( t C_ A <-> ( ( S i^i dom F ) u. { z } ) C_ A ) ) |
|
| 68 | sseq2 | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( Pred ( R , A , w ) C_ t <-> Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) |
|
| 69 | 68 | raleqbi1dv | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( A. w e. t Pred ( R , A , w ) C_ t <-> A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) |
| 70 | 67 69 | anbi12d | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) <-> ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) ) ) |
| 71 | raleq | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) <-> A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
|
| 72 | 66 70 71 | 3anbi123d | |- ( t = ( ( S i^i dom F ) u. { z } ) -> ( ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) <-> ( C Fn ( ( S i^i dom F ) u. { z } ) /\ ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) /\ A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) |
| 73 | 72 | spcegv | |- ( ( ( S i^i dom F ) u. { z } ) e. _V -> ( ( C Fn ( ( S i^i dom F ) u. { z } ) /\ ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) /\ A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) -> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) |
| 74 | 73 | imp | |- ( ( ( ( S i^i dom F ) u. { z } ) e. _V /\ ( C Fn ( ( S i^i dom F ) u. { z } ) /\ ( ( ( S i^i dom F ) u. { z } ) C_ A /\ A. w e. ( ( S i^i dom F ) u. { z } ) Pred ( R , A , w ) C_ ( ( S i^i dom F ) u. { z } ) ) /\ A. w e. ( ( S i^i dom F ) u. { z } ) ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) -> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 75 | 17 19 61 65 74 | syl13anc | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 76 | 1 2 3 | frrlem9 | |- ( ph -> Fun F ) |
| 77 | resfunexg | |- ( ( Fun F /\ S e. _V ) -> ( F |` S ) e. _V ) |
|
| 78 | 76 12 77 | syl2an2r | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( F |` S ) e. _V ) |
| 79 | snex | |- { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } e. _V |
|
| 80 | unexg | |- ( ( ( F |` S ) e. _V /\ { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } e. _V ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) e. _V ) |
|
| 81 | 78 79 80 | sylancl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) e. _V ) |
| 82 | 4 81 | eqeltrid | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. _V ) |
| 83 | fneq1 | |- ( c = C -> ( c Fn t <-> C Fn t ) ) |
|
| 84 | fveq1 | |- ( c = C -> ( c ` w ) = ( C ` w ) ) |
|
| 85 | reseq1 | |- ( c = C -> ( c |` Pred ( R , A , w ) ) = ( C |` Pred ( R , A , w ) ) ) |
|
| 86 | 85 | oveq2d | |- ( c = C -> ( w G ( c |` Pred ( R , A , w ) ) ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) |
| 87 | 84 86 | eqeq12d | |- ( c = C -> ( ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) <-> ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 88 | 87 | ralbidv | |- ( c = C -> ( A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) <-> A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) |
| 89 | 83 88 | 3anbi13d | |- ( c = C -> ( ( c Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) ) <-> ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) |
| 90 | 89 | exbidv | |- ( c = C -> ( E. t ( c Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) ) <-> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) |
| 91 | 1 | frrlem1 | |- B = { c | E. t ( c Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( c ` w ) = ( w G ( c |` Pred ( R , A , w ) ) ) ) } |
| 92 | 90 91 | elab2g | |- ( C e. _V -> ( C e. B <-> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) |
| 93 | 82 92 | syl | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> ( C e. B <-> E. t ( C Fn t /\ ( t C_ A /\ A. w e. t Pred ( R , A , w ) C_ t ) /\ A. w e. t ( C ` w ) = ( w G ( C |` Pred ( R , A , w ) ) ) ) ) ) |
| 94 | 75 93 | mpbird | |- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. B ) |