This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preddif | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indifdir | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∖ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) | |
| 2 | df-pred | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑋 ) = ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 3 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 4 | df-pred | ⊢ Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
| 5 | 3 4 | difeq12i | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∖ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 6 | 1 2 5 | 3eqtr4i | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |