This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Show that the well-founded recursive generator produces a function. Hypothesis three will be eliminated using different induction rules depending on if we use partial orders or the axiom of infinity. (Contributed by Scott Fenton, 27-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem9.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem9.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| frrlem9.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | ||
| Assertion | frrlem9 | ⊢ ( 𝜑 → Fun 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem9.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem9.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | frrlem9.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 4 | eluni2 | ⊢ ( 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐵 ↔ ∃ 𝑔 ∈ 𝐵 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) | |
| 5 | df-br | ⊢ ( 𝑥 𝐹 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ 𝐹 ) | |
| 6 | 1 2 | frrlem5 | ⊢ 𝐹 = ∪ 𝐵 |
| 7 | 6 | eleq2i | ⊢ ( 〈 𝑥 , 𝑢 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐵 ) |
| 8 | 5 7 | bitri | ⊢ ( 𝑥 𝐹 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ ∪ 𝐵 ) |
| 9 | df-br | ⊢ ( 𝑥 𝑔 𝑢 ↔ 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) | |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ↔ ∃ 𝑔 ∈ 𝐵 〈 𝑥 , 𝑢 〉 ∈ 𝑔 ) |
| 11 | 4 8 10 | 3bitr4i | ⊢ ( 𝑥 𝐹 𝑢 ↔ ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ) |
| 12 | eluni2 | ⊢ ( 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐵 ↔ ∃ ℎ ∈ 𝐵 〈 𝑥 , 𝑣 〉 ∈ ℎ ) | |
| 13 | df-br | ⊢ ( 𝑥 𝐹 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ 𝐹 ) | |
| 14 | 6 | eleq2i | ⊢ ( 〈 𝑥 , 𝑣 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐵 ) |
| 15 | 13 14 | bitri | ⊢ ( 𝑥 𝐹 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ ∪ 𝐵 ) |
| 16 | df-br | ⊢ ( 𝑥 ℎ 𝑣 ↔ 〈 𝑥 , 𝑣 〉 ∈ ℎ ) | |
| 17 | 16 | rexbii | ⊢ ( ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ↔ ∃ ℎ ∈ 𝐵 〈 𝑥 , 𝑣 〉 ∈ ℎ ) |
| 18 | 12 15 17 | 3bitr4i | ⊢ ( 𝑥 𝐹 𝑣 ↔ ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ) |
| 19 | 11 18 | anbi12i | ⊢ ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) ↔ ( ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ∧ ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ) ) |
| 20 | reeanv | ⊢ ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ↔ ( ∃ 𝑔 ∈ 𝐵 𝑥 𝑔 𝑢 ∧ ∃ ℎ ∈ 𝐵 𝑥 ℎ 𝑣 ) ) | |
| 21 | 19 20 | bitr4i | ⊢ ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) ↔ ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) |
| 22 | 3 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝐵 ∃ ℎ ∈ 𝐵 ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 23 | 21 22 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 24 | 23 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 25 | 24 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 26 | 1 2 | frrlem6 | ⊢ Rel 𝐹 |
| 27 | dffun2 | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) ) | |
| 28 | 26 27 | mpbiran | ⊢ ( Fun 𝐹 ↔ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 𝐹 𝑢 ∧ 𝑥 𝐹 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 29 | 25 28 | sylibr | ⊢ ( 𝜑 → Fun 𝐹 ) |