This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. The final item we are interested in is the union of acceptable functions B . This lemma just changes bound variables for later use. (Contributed by Paul Chapman, 21-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frrlem1.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| Assertion | frrlem1 | ⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem1.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | fneq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥 ) ) | |
| 3 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 4 | reseq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑓 = 𝑔 → ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 8 | 2 7 | 3anbi13d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 9 | 8 | exbidv | ⊢ ( 𝑓 = 𝑔 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) ) |
| 10 | fneq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧 ) ) | |
| 11 | sseq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) | |
| 12 | sseq2 | ⊢ ( 𝑥 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ) ) | |
| 13 | 12 | raleqbi1dv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ) ) |
| 14 | predeq3 | ⊢ ( 𝑦 = 𝑤 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑤 ) ) | |
| 15 | 14 | sseq1d | ⊢ ( 𝑦 = 𝑤 → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) |
| 16 | 15 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) |
| 17 | 13 16 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) |
| 18 | 11 17 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) |
| 19 | raleq | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) | |
| 20 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑤 ) ) | |
| 21 | id | ⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) | |
| 22 | 14 | reseq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) |
| 23 | 21 22 | oveq12d | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 24 | 20 23 | eqeq12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 25 | 24 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝑧 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 26 | 19 25 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 27 | 10 18 26 | 3anbi123d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 28 | 27 | cbvexvw | ⊢ ( ∃ 𝑥 ( 𝑔 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑔 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 29 | 9 28 | bitrdi | ⊢ ( 𝑓 = 𝑔 → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 30 | 29 | cbvabv | ⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 31 | 1 30 | eqtri | ⊢ 𝐵 = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |