This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Finally, we tie all these threads together and show that dom F = A when given the right S . Specifically, we prove that there can be no R -minimal element of ( A \ dom F ) . (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem11.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| frrlem11.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | ||
| frrlem11.4 | ⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | ||
| frrlem12.5 | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | ||
| frrlem12.6 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) | ||
| frrlem12.7 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | ||
| frrlem13.8 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ∈ V ) | ||
| frrlem13.9 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ⊆ 𝐴 ) | ||
| frrlem14.10 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) | ||
| Assertion | frrlem14 | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem11.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | frrlem11.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 4 | frrlem11.4 | ⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | |
| 5 | frrlem12.5 | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | |
| 6 | frrlem12.6 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) | |
| 7 | frrlem12.7 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | |
| 8 | frrlem13.8 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ∈ V ) | |
| 9 | frrlem13.9 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ⊆ 𝐴 ) | |
| 10 | frrlem14.10 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) | |
| 11 | 1 2 | frrlem7 | ⊢ dom 𝐹 ⊆ 𝐴 |
| 12 | 11 | a1i | ⊢ ( 𝜑 → dom 𝐹 ⊆ 𝐴 ) |
| 13 | eldifn | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → ¬ 𝑧 ∈ dom 𝐹 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ¬ 𝑧 ∈ dom 𝐹 ) |
| 15 | 1 2 3 4 5 6 7 8 9 | frrlem13 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ∈ 𝐵 ) |
| 16 | elssuni | ⊢ ( 𝐶 ∈ 𝐵 → 𝐶 ⊆ ∪ 𝐵 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ⊆ ∪ 𝐵 ) |
| 18 | 1 2 | frrlem5 | ⊢ 𝐹 = ∪ 𝐵 |
| 19 | 17 18 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ⊆ 𝐹 ) |
| 20 | dmss | ⊢ ( 𝐶 ⊆ 𝐹 → dom 𝐶 ⊆ dom 𝐹 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → dom 𝐶 ⊆ dom 𝐹 ) |
| 22 | ssun2 | ⊢ { 𝑧 } ⊆ ( dom ( 𝐹 ↾ 𝑆 ) ∪ { 𝑧 } ) | |
| 23 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 24 | 22 23 | sselii | ⊢ 𝑧 ∈ ( dom ( 𝐹 ↾ 𝑆 ) ∪ { 𝑧 } ) |
| 25 | 4 | dmeqi | ⊢ dom 𝐶 = dom ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) |
| 26 | dmun | ⊢ dom ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom ( 𝐹 ↾ 𝑆 ) ∪ dom { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | |
| 27 | ovex | ⊢ ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) ∈ V | |
| 28 | 27 | dmsnop | ⊢ dom { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } = { 𝑧 } |
| 29 | 28 | uneq2i | ⊢ ( dom ( 𝐹 ↾ 𝑆 ) ∪ dom { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) = ( dom ( 𝐹 ↾ 𝑆 ) ∪ { 𝑧 } ) |
| 30 | 25 26 29 | 3eqtri | ⊢ dom 𝐶 = ( dom ( 𝐹 ↾ 𝑆 ) ∪ { 𝑧 } ) |
| 31 | 24 30 | eleqtrri | ⊢ 𝑧 ∈ dom 𝐶 |
| 32 | 31 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑧 ∈ dom 𝐶 ) |
| 33 | 21 32 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑧 ∈ dom 𝐹 ) |
| 34 | 33 | expr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → 𝑧 ∈ dom 𝐹 ) ) |
| 35 | 14 34 | mtod | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ¬ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
| 36 | 35 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
| 37 | df-ne | ⊢ ( ( 𝐴 ∖ dom 𝐹 ) ≠ ∅ ↔ ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ ) | |
| 38 | 37 10 | sylan2br | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) |
| 39 | 38 | ex | ⊢ ( 𝜑 → ( ¬ ( 𝐴 ∖ dom 𝐹 ) = ∅ → ∃ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) |
| 40 | 36 39 | mt3d | ⊢ ( 𝜑 → ( 𝐴 ∖ dom 𝐹 ) = ∅ ) |
| 41 | ssdif0 | ⊢ ( 𝐴 ⊆ dom 𝐹 ↔ ( 𝐴 ∖ dom 𝐹 ) = ∅ ) | |
| 42 | 40 41 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 43 | 12 42 | eqssd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |