This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a prime number P , if X and Y are members of a commutative ring R of characteristic P , then ( ( X + Y ) ^ P ) = ( ( X ^ P ) + ( Y ^ P ) ) . This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | freshmansdream.s | |- B = ( Base ` R ) |
|
| freshmansdream.a | |- .+ = ( +g ` R ) |
||
| freshmansdream.p | |- .^ = ( .g ` ( mulGrp ` R ) ) |
||
| freshmansdream.c | |- P = ( chr ` R ) |
||
| freshmansdream.r | |- ( ph -> R e. CRing ) |
||
| freshmansdream.1 | |- ( ph -> P e. Prime ) |
||
| freshmansdream.x | |- ( ph -> X e. B ) |
||
| freshmansdream.y | |- ( ph -> Y e. B ) |
||
| Assertion | freshmansdream | |- ( ph -> ( P .^ ( X .+ Y ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freshmansdream.s | |- B = ( Base ` R ) |
|
| 2 | freshmansdream.a | |- .+ = ( +g ` R ) |
|
| 3 | freshmansdream.p | |- .^ = ( .g ` ( mulGrp ` R ) ) |
|
| 4 | freshmansdream.c | |- P = ( chr ` R ) |
|
| 5 | freshmansdream.r | |- ( ph -> R e. CRing ) |
|
| 6 | freshmansdream.1 | |- ( ph -> P e. Prime ) |
|
| 7 | freshmansdream.x | |- ( ph -> X e. B ) |
|
| 8 | freshmansdream.y | |- ( ph -> Y e. B ) |
|
| 9 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 10 | 4 | chrcl | |- ( R e. Ring -> P e. NN0 ) |
| 11 | 5 9 10 | 3syl | |- ( ph -> P e. NN0 ) |
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | eqid | |- ( .g ` R ) = ( .g ` R ) |
|
| 14 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 15 | 1 12 13 2 14 3 | crngbinom | |- ( ( ( R e. CRing /\ P e. NN0 ) /\ ( X e. B /\ Y e. B ) ) -> ( P .^ ( X .+ Y ) ) = ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) |
| 16 | 5 11 7 8 15 | syl22anc | |- ( ph -> ( P .^ ( X .+ Y ) ) = ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) |
| 17 | 11 | nn0cnd | |- ( ph -> P e. CC ) |
| 18 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 19 | 17 18 | npcand | |- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
| 20 | 19 | oveq2d | |- ( ph -> ( 0 ... ( ( P - 1 ) + 1 ) ) = ( 0 ... P ) ) |
| 21 | 20 | eqcomd | |- ( ph -> ( 0 ... P ) = ( 0 ... ( ( P - 1 ) + 1 ) ) ) |
| 22 | 21 | mpteq1d | |- ( ph -> ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) = ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) |
| 23 | 22 | oveq2d | |- ( ph -> ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) |
| 24 | ringcmn | |- ( R e. Ring -> R e. CMnd ) |
|
| 25 | 5 9 24 | 3syl | |- ( ph -> R e. CMnd ) |
| 26 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 27 | nnm1nn0 | |- ( P e. NN -> ( P - 1 ) e. NN0 ) |
|
| 28 | 6 26 27 | 3syl | |- ( ph -> ( P - 1 ) e. NN0 ) |
| 29 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 30 | 5 9 29 | 3syl | |- ( ph -> R e. Grp ) |
| 31 | 30 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> R e. Grp ) |
| 32 | 11 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> P e. NN0 ) |
| 33 | fzssz | |- ( 0 ... ( ( P - 1 ) + 1 ) ) C_ ZZ |
|
| 34 | 33 | a1i | |- ( ph -> ( 0 ... ( ( P - 1 ) + 1 ) ) C_ ZZ ) |
| 35 | 34 | sselda | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ZZ ) |
| 36 | bccl | |- ( ( P e. NN0 /\ i e. ZZ ) -> ( P _C i ) e. NN0 ) |
|
| 37 | 32 35 36 | syl2anc | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P _C i ) e. NN0 ) |
| 38 | 37 | nn0zd | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P _C i ) e. ZZ ) |
| 39 | 5 9 | syl | |- ( ph -> R e. Ring ) |
| 40 | 39 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> R e. Ring ) |
| 41 | 14 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 42 | 14 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 43 | 39 42 | syl | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 44 | 43 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 45 | simpr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) |
|
| 46 | 20 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( 0 ... ( ( P - 1 ) + 1 ) ) = ( 0 ... P ) ) |
| 47 | 45 46 | eleqtrd | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ( 0 ... P ) ) |
| 48 | fznn0sub | |- ( i e. ( 0 ... P ) -> ( P - i ) e. NN0 ) |
|
| 49 | 47 48 | syl | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P - i ) e. NN0 ) |
| 50 | 7 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> X e. B ) |
| 51 | 41 3 44 49 50 | mulgnn0cld | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) |
| 52 | elfznn0 | |- ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) -> i e. NN0 ) |
|
| 53 | 52 | adantl | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. NN0 ) |
| 54 | 8 | adantr | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> Y e. B ) |
| 55 | 41 3 44 53 54 | mulgnn0cld | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( i .^ Y ) e. B ) |
| 56 | 1 12 | ringcl | |- ( ( R e. Ring /\ ( ( P - i ) .^ X ) e. B /\ ( i .^ Y ) e. B ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
| 57 | 40 51 55 56 | syl3anc | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
| 58 | 1 13 | mulgcl | |- ( ( R e. Grp /\ ( P _C i ) e. ZZ /\ ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) |
| 59 | 31 38 57 58 | syl3anc | |- ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) |
| 60 | 1 2 25 28 59 | gsummptfzsplit | |- ( ph -> ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) ) |
| 61 | 30 | adantr | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> R e. Grp ) |
| 62 | elfzelz | |- ( i e. ( 0 ... ( P - 1 ) ) -> i e. ZZ ) |
|
| 63 | 11 62 36 | syl2an | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P _C i ) e. NN0 ) |
| 64 | 63 | nn0zd | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P _C i ) e. ZZ ) |
| 65 | 39 | adantr | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> R e. Ring ) |
| 66 | 65 42 | syl | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 67 | fzssp1 | |- ( 0 ... ( P - 1 ) ) C_ ( 0 ... ( ( P - 1 ) + 1 ) ) |
|
| 68 | 67 20 | sseqtrid | |- ( ph -> ( 0 ... ( P - 1 ) ) C_ ( 0 ... P ) ) |
| 69 | 68 | sselda | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> i e. ( 0 ... P ) ) |
| 70 | 69 48 | syl | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P - i ) e. NN0 ) |
| 71 | 7 | adantr | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> X e. B ) |
| 72 | 41 3 66 70 71 | mulgnn0cld | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) |
| 73 | elfznn0 | |- ( i e. ( 0 ... ( P - 1 ) ) -> i e. NN0 ) |
|
| 74 | 73 | adantl | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> i e. NN0 ) |
| 75 | 8 | adantr | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> Y e. B ) |
| 76 | 41 3 66 74 75 | mulgnn0cld | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( i .^ Y ) e. B ) |
| 77 | 65 72 76 56 | syl3anc | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
| 78 | 61 64 77 58 | syl3anc | |- ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) |
| 79 | 1 2 25 28 78 | gsummptfzsplitl | |- ( ph -> ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) ) |
| 80 | 39 | adantr | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> R e. Ring ) |
| 81 | prmdvdsbc | |- ( ( P e. Prime /\ i e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C i ) ) |
|
| 82 | 6 81 | sylan | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C i ) ) |
| 83 | 80 42 | syl | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) |
| 84 | 11 | nn0zd | |- ( ph -> P e. ZZ ) |
| 85 | 1nn0 | |- 1 e. NN0 |
|
| 86 | eluzmn | |- ( ( P e. ZZ /\ 1 e. NN0 ) -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
|
| 87 | 84 85 86 | sylancl | |- ( ph -> P e. ( ZZ>= ` ( P - 1 ) ) ) |
| 88 | fzss2 | |- ( P e. ( ZZ>= ` ( P - 1 ) ) -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
|
| 89 | 87 88 | syl | |- ( ph -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) |
| 90 | 89 | sselda | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> i e. ( 1 ... P ) ) |
| 91 | fznn0sub | |- ( i e. ( 1 ... P ) -> ( P - i ) e. NN0 ) |
|
| 92 | 90 91 | syl | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( P - i ) e. NN0 ) |
| 93 | 7 | adantr | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> X e. B ) |
| 94 | 41 3 83 92 93 | mulgnn0cld | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) |
| 95 | elfznn | |- ( i e. ( 1 ... ( P - 1 ) ) -> i e. NN ) |
|
| 96 | 95 | nnnn0d | |- ( i e. ( 1 ... ( P - 1 ) ) -> i e. NN0 ) |
| 97 | 96 | adantl | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> i e. NN0 ) |
| 98 | 8 | adantr | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> Y e. B ) |
| 99 | 41 3 83 97 98 | mulgnn0cld | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( i .^ Y ) e. B ) |
| 100 | 80 94 99 56 | syl3anc | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) |
| 101 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 102 | 4 1 13 101 | dvdschrmulg | |- ( ( R e. Ring /\ P || ( P _C i ) /\ ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( 0g ` R ) ) |
| 103 | 80 82 100 102 | syl3anc | |- ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( 0g ` R ) ) |
| 104 | 103 | mpteq2dva | |- ( ph -> ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) = ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) |
| 105 | 104 | oveq2d | |- ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) ) |
| 106 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 107 | 39 106 | syl | |- ( ph -> R e. Mnd ) |
| 108 | ovex | |- ( 1 ... ( P - 1 ) ) e. _V |
|
| 109 | 101 | gsumz | |- ( ( R e. Mnd /\ ( 1 ... ( P - 1 ) ) e. _V ) -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 110 | 107 108 109 | sylancl | |- ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
| 111 | 105 110 | eqtrd | |- ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( 0g ` R ) ) |
| 112 | 0nn0 | |- 0 e. NN0 |
|
| 113 | 112 | a1i | |- ( ph -> 0 e. NN0 ) |
| 114 | 41 3 43 11 7 | mulgnn0cld | |- ( ph -> ( P .^ X ) e. B ) |
| 115 | simpr | |- ( ( ph /\ i = 0 ) -> i = 0 ) |
|
| 116 | 115 | oveq2d | |- ( ( ph /\ i = 0 ) -> ( P _C i ) = ( P _C 0 ) ) |
| 117 | 115 | oveq2d | |- ( ( ph /\ i = 0 ) -> ( P - i ) = ( P - 0 ) ) |
| 118 | 117 | oveq1d | |- ( ( ph /\ i = 0 ) -> ( ( P - i ) .^ X ) = ( ( P - 0 ) .^ X ) ) |
| 119 | 115 | oveq1d | |- ( ( ph /\ i = 0 ) -> ( i .^ Y ) = ( 0 .^ Y ) ) |
| 120 | 118 119 | oveq12d | |- ( ( ph /\ i = 0 ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) = ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) |
| 121 | 116 120 | oveq12d | |- ( ( ph /\ i = 0 ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) ) |
| 122 | bcn0 | |- ( P e. NN0 -> ( P _C 0 ) = 1 ) |
|
| 123 | 11 122 | syl | |- ( ph -> ( P _C 0 ) = 1 ) |
| 124 | 17 | subid1d | |- ( ph -> ( P - 0 ) = P ) |
| 125 | 124 | oveq1d | |- ( ph -> ( ( P - 0 ) .^ X ) = ( P .^ X ) ) |
| 126 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 127 | 14 126 | ringidval | |- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 128 | 41 127 3 | mulg0 | |- ( Y e. B -> ( 0 .^ Y ) = ( 1r ` R ) ) |
| 129 | 8 128 | syl | |- ( ph -> ( 0 .^ Y ) = ( 1r ` R ) ) |
| 130 | 125 129 | oveq12d | |- ( ph -> ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) = ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) ) |
| 131 | 1 12 126 | ringridm | |- ( ( R e. Ring /\ ( P .^ X ) e. B ) -> ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) = ( P .^ X ) ) |
| 132 | 39 114 131 | syl2anc | |- ( ph -> ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) = ( P .^ X ) ) |
| 133 | 130 132 | eqtrd | |- ( ph -> ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) = ( P .^ X ) ) |
| 134 | 123 133 | oveq12d | |- ( ph -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( 1 ( .g ` R ) ( P .^ X ) ) ) |
| 135 | 1 13 | mulg1 | |- ( ( P .^ X ) e. B -> ( 1 ( .g ` R ) ( P .^ X ) ) = ( P .^ X ) ) |
| 136 | 114 135 | syl | |- ( ph -> ( 1 ( .g ` R ) ( P .^ X ) ) = ( P .^ X ) ) |
| 137 | 134 136 | eqtrd | |- ( ph -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( P .^ X ) ) |
| 138 | 137 | adantr | |- ( ( ph /\ i = 0 ) -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( P .^ X ) ) |
| 139 | 121 138 | eqtrd | |- ( ( ph /\ i = 0 ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( P .^ X ) ) |
| 140 | 1 107 113 114 139 | gsumsnd | |- ( ph -> ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ X ) ) |
| 141 | 111 140 | oveq12d | |- ( ph -> ( ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) = ( ( 0g ` R ) .+ ( P .^ X ) ) ) |
| 142 | 1 2 101 | grplid | |- ( ( R e. Grp /\ ( P .^ X ) e. B ) -> ( ( 0g ` R ) .+ ( P .^ X ) ) = ( P .^ X ) ) |
| 143 | 30 114 142 | syl2anc | |- ( ph -> ( ( 0g ` R ) .+ ( P .^ X ) ) = ( P .^ X ) ) |
| 144 | 79 141 143 | 3eqtrd | |- ( ph -> ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ X ) ) |
| 145 | 19 11 | eqeltrd | |- ( ph -> ( ( P - 1 ) + 1 ) e. NN0 ) |
| 146 | 41 3 43 11 8 | mulgnn0cld | |- ( ph -> ( P .^ Y ) e. B ) |
| 147 | simpr | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> i = ( ( P - 1 ) + 1 ) ) |
|
| 148 | 19 | adantr | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P - 1 ) + 1 ) = P ) |
| 149 | 147 148 | eqtrd | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> i = P ) |
| 150 | 149 | oveq2d | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( P _C i ) = ( P _C P ) ) |
| 151 | 149 | oveq2d | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( P - i ) = ( P - P ) ) |
| 152 | 151 | oveq1d | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P - i ) .^ X ) = ( ( P - P ) .^ X ) ) |
| 153 | 149 | oveq1d | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( i .^ Y ) = ( P .^ Y ) ) |
| 154 | 152 153 | oveq12d | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) = ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) |
| 155 | 150 154 | oveq12d | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) ) |
| 156 | bcnn | |- ( P e. NN0 -> ( P _C P ) = 1 ) |
|
| 157 | 11 156 | syl | |- ( ph -> ( P _C P ) = 1 ) |
| 158 | 17 | subidd | |- ( ph -> ( P - P ) = 0 ) |
| 159 | 158 | oveq1d | |- ( ph -> ( ( P - P ) .^ X ) = ( 0 .^ X ) ) |
| 160 | 41 127 3 | mulg0 | |- ( X e. B -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 161 | 7 160 | syl | |- ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) |
| 162 | 159 161 | eqtrd | |- ( ph -> ( ( P - P ) .^ X ) = ( 1r ` R ) ) |
| 163 | 162 | oveq1d | |- ( ph -> ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) = ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) ) |
| 164 | 1 12 126 | ringlidm | |- ( ( R e. Ring /\ ( P .^ Y ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
| 165 | 39 146 164 | syl2anc | |- ( ph -> ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
| 166 | 163 165 | eqtrd | |- ( ph -> ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
| 167 | 157 166 | oveq12d | |- ( ph -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( 1 ( .g ` R ) ( P .^ Y ) ) ) |
| 168 | 1 13 | mulg1 | |- ( ( P .^ Y ) e. B -> ( 1 ( .g ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
| 169 | 146 168 | syl | |- ( ph -> ( 1 ( .g ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) |
| 170 | 167 169 | eqtrd | |- ( ph -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( P .^ Y ) ) |
| 171 | 170 | adantr | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( P .^ Y ) ) |
| 172 | 155 171 | eqtrd | |- ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( P .^ Y ) ) |
| 173 | 1 107 145 146 172 | gsumsnd | |- ( ph -> ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ Y ) ) |
| 174 | 144 173 | oveq12d | |- ( ph -> ( ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |
| 175 | 60 174 | eqtrd | |- ( ph -> ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |
| 176 | 16 23 175 | 3eqtrd | |- ( ph -> ( P .^ ( X .+ Y ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |