This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an earlier upper set of integers. (Contributed by Thierry Arnoux, 8-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzmn | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) | |
| 2 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 3 | 2 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 4 | 1 3 | zsubcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 5 | 1 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 6 | 2 | nn0red | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 7 | 5 6 | readdcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
| 8 | nn0addge1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑀 + 𝑁 ) ) | |
| 9 | 5 8 | sylancom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑀 + 𝑁 ) ) |
| 10 | 5 7 6 9 | lesub1dd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 − 𝑁 ) ≤ ( ( 𝑀 + 𝑁 ) − 𝑁 ) ) |
| 11 | 5 | recnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 12 | 6 | recnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 13 | 11 12 | pncand | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) − 𝑁 ) = 𝑀 ) |
| 14 | 10 13 | breqtrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 − 𝑁 ) ≤ 𝑀 ) |
| 15 | eluz2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ↔ ( ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ≤ 𝑀 ) ) | |
| 16 | 4 1 14 15 | syl3anbrc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ) |