This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptfzsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsummptfzsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptfzsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| gsummptfzsplit.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑌 ∈ 𝐵 ) | ||
| Assertion | gsummptfzsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptfzsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsummptfzsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptfzsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 5 | gsummptfzsplit.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑌 ∈ 𝐵 ) | |
| 6 | fzfid | ⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) ∈ Fin ) | |
| 7 | fzp1disj | ⊢ ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) |
| 9 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 10 | 4 9 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 | fzsuc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| 13 | 1 2 3 6 5 8 12 | gsummptfidmsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝑌 ) ) ) ) |