This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: N choose 0 is 1. Remark in Gleason p. 296. (Contributed by NM, 17-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elfz | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) | |
| 2 | bcval2 | ⊢ ( 0 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 0 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) ) |
| 4 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 5 | 4 | subid1d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 0 ) = 𝑁 ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 − 0 ) ) = ( ! ‘ 𝑁 ) ) |
| 7 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 8 | oveq12 | ⊢ ( ( ( ! ‘ ( 𝑁 − 0 ) ) = ( ! ‘ 𝑁 ) ∧ ( ! ‘ 0 ) = 1 ) → ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) = ( ( ! ‘ 𝑁 ) · 1 ) ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) = ( ( ! ‘ 𝑁 ) · 1 ) ) |
| 10 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 11 | 10 | nncnd | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 12 | 11 | mulridd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) · 1 ) = ( ! ‘ 𝑁 ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) = ( ! ‘ 𝑁 ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) = ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) |
| 15 | facne0 | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ≠ 0 ) | |
| 16 | 11 15 | dividd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) = 1 ) |
| 17 | 14 16 | eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) = 1 ) |
| 18 | 3 17 | eqtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = 1 ) |