This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| gsumsnd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| gsumsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) | ||
| Assertion | gsumsnd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 3 | gsumsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 4 | gsumsnd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 5 | gsumsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) | |
| 6 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 7 | nfcv | ⊢ Ⅎ 𝑘 𝐶 | |
| 8 | 1 2 3 4 5 6 7 | gsumsnfd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |