This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdschrmulg.1 | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| dvdschrmulg.2 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| dvdschrmulg.3 | ⊢ · = ( .g ‘ 𝑅 ) | ||
| dvdschrmulg.4 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | dvdschrmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdschrmulg.1 | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| 2 | dvdschrmulg.2 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | dvdschrmulg.3 | ⊢ · = ( .g ‘ 𝑅 ) | |
| 4 | dvdschrmulg.4 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 6 | dvdszrcl | ⊢ ( 𝐶 ∥ 𝑁 → ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 7 | 6 | simprd | ⊢ ( 𝐶 ∥ 𝑁 → 𝑁 ∈ ℤ ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) |
| 9 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 10 | 2 9 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 11 | 5 10 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 12 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 14 | 2 3 13 | mulgass2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ∈ ℤ ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) → ( ( 𝑁 · ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 𝑁 · ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝐴 ) ) ) |
| 15 | 5 8 11 12 14 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑁 · ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 𝑁 · ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝐴 ) ) ) |
| 16 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 17 | 5 16 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 18 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
| 19 | 18 9 1 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
| 20 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → 𝐶 ∥ 𝑁 ) | |
| 21 | 19 20 | eqbrtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ) |
| 22 | 2 18 3 4 | oddvdsi | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ) → ( 𝑁 · ( 1r ‘ 𝑅 ) ) = 0 ) |
| 23 | 17 11 21 22 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 · ( 1r ‘ 𝑅 ) ) = 0 ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑁 · ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝐴 ) = ( 0 ( .r ‘ 𝑅 ) 𝐴 ) ) |
| 25 | 2 13 4 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝐴 ) = 0 ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) 𝐴 ) = 0 ) |
| 27 | 24 26 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑁 · ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝐴 ) = 0 ) |
| 28 | 2 13 9 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝐴 ) = 𝐴 ) |
| 29 | 28 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝐴 ) = 𝐴 ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 · ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝐴 ) ) = ( 𝑁 · 𝐴 ) ) |
| 31 | 15 27 30 | 3eqtr3rd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 · 𝐴 ) = 0 ) |