This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for commutative rings (special case of csrgbinom ): ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngbinom.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| crngbinom.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| crngbinom.t | ⊢ · = ( .g ‘ 𝑅 ) | ||
| crngbinom.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| crngbinom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| crngbinom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| Assertion | crngbinom | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngbinom.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| 2 | crngbinom.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 3 | crngbinom.t | ⊢ · = ( .g ‘ 𝑅 ) | |
| 4 | crngbinom.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 5 | crngbinom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 6 | crngbinom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 8 | ringsrg | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ SRing ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ SRing ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → 𝑅 ∈ SRing ) |
| 11 | 5 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
| 13 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 14 | 10 12 13 | 3jca | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) → ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ) |
| 15 | 1 2 3 4 5 6 | csrgbinom | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |
| 16 | 14 15 | sylan | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝑁 ↑ ( 𝐴 + 𝐵 ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝐵 ) ) ) ) ) ) |