This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptfzsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsummptfzsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptfzsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| gsummptfzsplitl.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑌 ∈ 𝐵 ) | ||
| Assertion | gsummptfzsplitl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 0 } ↦ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptfzsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsummptfzsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptfzsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 5 | gsummptfzsplitl.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑌 ∈ 𝐵 ) | |
| 6 | fzfid | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) | |
| 7 | incom | ⊢ ( ( 1 ... 𝑁 ) ∩ { 0 } ) = ( { 0 } ∩ ( 1 ... 𝑁 ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∩ { 0 } ) = ( { 0 } ∩ ( 1 ... 𝑁 ) ) ) |
| 9 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 10 | 9 | oveq1i | ⊢ ( 1 ... 𝑁 ) = ( ( 0 + 1 ) ... 𝑁 ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 0 + 1 ) ... 𝑁 ) ) |
| 12 | 11 | ineq2d | ⊢ ( 𝜑 → ( { 0 } ∩ ( 1 ... 𝑁 ) ) = ( { 0 } ∩ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
| 13 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 14 | 13 | biimpi | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 15 | fzpreddisj | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( { 0 } ∩ ( ( 0 + 1 ) ... 𝑁 ) ) = ∅ ) | |
| 16 | 4 14 15 | 3syl | ⊢ ( 𝜑 → ( { 0 } ∩ ( ( 0 + 1 ) ... 𝑁 ) ) = ∅ ) |
| 17 | 8 12 16 | 3eqtrd | ⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∩ { 0 } ) = ∅ ) |
| 18 | fzpred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) ) | |
| 19 | 4 14 18 | 3syl | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
| 20 | uncom | ⊢ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) = ( ( ( 0 + 1 ) ... 𝑁 ) ∪ { 0 } ) | |
| 21 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 22 | 21 | oveq1i | ⊢ ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) |
| 23 | 22 | uneq1i | ⊢ ( ( ( 0 + 1 ) ... 𝑁 ) ∪ { 0 } ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) |
| 24 | 20 23 | eqtri | ⊢ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) |
| 25 | 19 24 | eqtrdi | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) ) |
| 26 | 1 2 3 6 5 17 25 | gsummptfidmsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 0 } ↦ 𝑌 ) ) ) ) |