This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005) (Revised by Mario Carneiro, 9-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bccl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 C 𝑘 ) = ( 0 C 𝑘 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑚 = 0 → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( 0 C 𝑘 ) ∈ ℕ0 ) ) |
| 3 | 2 | ralbidv | ⊢ ( 𝑚 = 0 → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( 0 C 𝑘 ) ∈ ℕ0 ) ) |
| 4 | oveq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 C 𝑘 ) = ( 𝑛 C 𝑘 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑛 C 𝑘 ) ∈ ℕ0 ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( 𝑛 C 𝑘 ) ∈ ℕ0 ) ) |
| 7 | oveq1 | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 C 𝑘 ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
| 10 | oveq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 C 𝑘 ) = ( 𝑁 C 𝑘 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑁 C 𝑘 ) ∈ ℕ0 ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( 𝑁 C 𝑘 ) ∈ ℕ0 ) ) |
| 13 | elfz1eq | ⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → 𝑘 = 0 ) |
| 15 | oveq2 | ⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = ( 0 C 0 ) ) | |
| 16 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 17 | bcn0 | ⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) | |
| 18 | 16 17 | ax-mp | ⊢ ( 0 C 0 ) = 1 |
| 19 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 20 | 18 19 | eqeltri | ⊢ ( 0 C 0 ) ∈ ℕ0 |
| 21 | 15 20 | eqeltrdi | ⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) ∈ ℕ0 ) |
| 22 | 14 21 | syl | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) ∈ ℕ0 ) |
| 23 | bcval3 | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) | |
| 24 | 16 23 | mp3an1 | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
| 25 | 24 16 | eqeltrdi | ⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) ∈ ℕ0 ) |
| 26 | 22 25 | pm2.61dan | ⊢ ( 𝑘 ∈ ℤ → ( 0 C 𝑘 ) ∈ ℕ0 ) |
| 27 | 26 | rgen | ⊢ ∀ 𝑘 ∈ ℤ ( 0 C 𝑘 ) ∈ ℕ0 |
| 28 | oveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑛 C 𝑘 ) = ( 𝑛 C 𝑚 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑛 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ) |
| 30 | 29 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℤ ( 𝑛 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) |
| 31 | bcpasc | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) | |
| 32 | 31 | adantlr | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) |
| 33 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑛 C 𝑚 ) = ( 𝑛 C 𝑘 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑛 C 𝑚 ) ∈ ℕ0 ↔ ( 𝑛 C 𝑘 ) ∈ ℕ0 ) ) |
| 35 | 34 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑛 C 𝑘 ) ∈ ℕ0 ) |
| 36 | peano2zm | ⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 1 ) ∈ ℤ ) | |
| 37 | oveq2 | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( 𝑛 C 𝑚 ) = ( 𝑛 C ( 𝑘 − 1 ) ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( ( 𝑛 C 𝑚 ) ∈ ℕ0 ↔ ( 𝑛 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) ) |
| 39 | 38 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( 𝑛 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
| 40 | 36 39 | sylan2 | ⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑛 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
| 41 | 35 40 | nn0addcld | ⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) ∈ ℕ0 ) |
| 42 | 41 | adantll | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) ∈ ℕ0 ) |
| 43 | 32 42 | eqeltrrd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) |
| 44 | 43 | ralrimiva | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) → ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) |
| 45 | 44 | ex | ⊢ ( 𝑛 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 → ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
| 46 | 30 45 | biimtrid | ⊢ ( 𝑛 ∈ ℕ0 → ( ∀ 𝑘 ∈ ℤ ( 𝑛 C 𝑘 ) ∈ ℕ0 → ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
| 47 | 3 6 9 12 27 46 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑘 ∈ ℤ ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
| 48 | oveq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑁 C 𝑘 ) = ( 𝑁 C 𝐾 ) ) | |
| 49 | 48 | eleq1d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑁 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑁 C 𝐾 ) ∈ ℕ0 ) ) |
| 50 | 49 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℤ ( 𝑁 C 𝑘 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |
| 51 | 47 50 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |