This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative ring with prime characteristic, the Frobenius function F is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frobrhm.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| frobrhm.2 | ⊢ 𝑃 = ( chr ‘ 𝑅 ) | ||
| frobrhm.3 | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | ||
| frobrhm.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑃 ↑ 𝑥 ) ) | ||
| frobrhm.5 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| frobrhm.6 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| Assertion | frobrhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frobrhm.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | frobrhm.2 | ⊢ 𝑃 = ( chr ‘ 𝑅 ) | |
| 3 | frobrhm.3 | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 4 | frobrhm.4 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑃 ↑ 𝑥 ) ) | |
| 5 | frobrhm.5 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | frobrhm.6 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | 5 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → 𝑥 = ( 1r ‘ 𝑅 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( 1r ‘ 𝑅 ) ) ) |
| 12 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 13 | 12 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 14 | 9 13 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 15 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 16 | nnnn0 | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) | |
| 17 | 6 15 16 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 18 | 12 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 19 | 12 7 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 20 | 18 3 19 | mulgnn0z | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑃 ∈ ℕ0 ) → ( 𝑃 ↑ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 21 | 14 17 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ↑ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( 𝑃 ↑ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 23 | 11 22 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 = ( 1r ‘ 𝑅 ) ) → ( 𝑃 ↑ 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 24 | 1 7 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 25 | 9 24 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 26 | 4 23 25 25 | fvmptd2 | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 27 | 12 | crngmgp | ⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 28 | 5 27 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 30 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑃 ∈ ℕ0 ) |
| 31 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑖 ∈ 𝐵 ) | |
| 32 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑗 ∈ 𝐵 ) | |
| 33 | 12 8 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 34 | 18 3 33 | mulgnn0di | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) = ( ( 𝑃 ↑ 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑗 ) ) ) |
| 35 | 29 30 31 32 34 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) = ( ( 𝑃 ↑ 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑗 ) ) ) |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) → 𝑥 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) | |
| 37 | 36 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) ) |
| 38 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 39 | 1 8 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) → ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ∈ 𝐵 ) |
| 40 | 38 31 32 39 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ∈ 𝐵 ) |
| 41 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) ∈ V ) | |
| 42 | 4 37 40 41 | fvmptd2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) = ( 𝑃 ↑ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) ) |
| 43 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑖 ) → 𝑥 = 𝑖 ) | |
| 44 | 43 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑖 ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 45 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ 𝑖 ) ∈ V ) | |
| 46 | 4 44 31 45 | fvmptd2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑖 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑗 ) → 𝑥 = 𝑗 ) | |
| 48 | 47 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑗 ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ 𝑗 ) ) |
| 49 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ 𝑗 ) ∈ V ) | |
| 50 | 4 48 32 49 | fvmptd2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝑃 ↑ 𝑗 ) ) |
| 51 | 46 50 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑖 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝑃 ↑ 𝑖 ) ( .r ‘ 𝑅 ) ( 𝑃 ↑ 𝑗 ) ) ) |
| 52 | 35 42 51 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑖 ( .r ‘ 𝑅 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 53 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 54 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 55 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑃 ∈ ℕ0 ) |
| 56 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 57 | 18 3 54 55 56 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑃 ↑ 𝑥 ) ∈ 𝐵 ) |
| 58 | 57 4 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐵 ) |
| 59 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑅 ∈ CRing ) |
| 60 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑃 ∈ ℙ ) |
| 61 | 1 53 3 2 59 60 31 32 | freshmansdream | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) = ( ( 𝑃 ↑ 𝑖 ) ( +g ‘ 𝑅 ) ( 𝑃 ↑ 𝑗 ) ) ) |
| 62 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) → 𝑥 = ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) ∧ 𝑥 = ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) → ( 𝑃 ↑ 𝑥 ) = ( 𝑃 ↑ ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) ) |
| 64 | 1 53 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ∈ 𝐵 ) |
| 65 | 38 31 32 64 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ∈ 𝐵 ) |
| 66 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝑃 ↑ ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) ∈ V ) | |
| 67 | 4 63 65 66 | fvmptd2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) = ( 𝑃 ↑ ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) ) |
| 68 | 46 50 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) = ( ( 𝑃 ↑ 𝑖 ) ( +g ‘ 𝑅 ) ( 𝑃 ↑ 𝑗 ) ) ) |
| 69 | 61 67 68 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑖 ( +g ‘ 𝑅 ) 𝑗 ) ) = ( ( 𝐹 ‘ 𝑖 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 70 | 1 7 7 8 8 9 9 26 52 1 53 53 58 69 | isrhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑅 ) ) |