This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem26 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑖 = ∅ → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ ∅ ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝑖 = ∅ → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ ∅ ) ) |
| 3 | breq2 | ⊢ ( 𝑖 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) | |
| 4 | 3 | rexbidv | ⊢ ( 𝑖 = 𝑎 → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
| 5 | breq2 | ⊢ ( 𝑖 = suc 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑖 = suc 𝑎 → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
| 7 | ordom | ⊢ Ord ω | |
| 8 | simpl | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ⊆ ω ) | |
| 9 | 0fi | ⊢ ∅ ∈ Fin | |
| 10 | eleq1 | ⊢ ( 𝑆 = ∅ → ( 𝑆 ∈ Fin ↔ ∅ ∈ Fin ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( 𝑆 = ∅ → 𝑆 ∈ Fin ) |
| 12 | 11 | necon3bi | ⊢ ( ¬ 𝑆 ∈ Fin → 𝑆 ≠ ∅ ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ≠ ∅ ) |
| 14 | tz7.5 | ⊢ ( ( Ord ω ∧ 𝑆 ⊆ ω ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ( 𝑆 ∩ 𝑗 ) = ∅ ) | |
| 15 | 7 8 13 14 | mp3an2i | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗 ∈ 𝑆 ( 𝑆 ∩ 𝑗 ) = ∅ ) |
| 16 | en0 | ⊢ ( ( 𝑗 ∩ 𝑆 ) ≈ ∅ ↔ ( 𝑗 ∩ 𝑆 ) = ∅ ) | |
| 17 | incom | ⊢ ( 𝑗 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑗 ) | |
| 18 | 17 | eqeq1i | ⊢ ( ( 𝑗 ∩ 𝑆 ) = ∅ ↔ ( 𝑆 ∩ 𝑗 ) = ∅ ) |
| 19 | 16 18 | bitri | ⊢ ( ( 𝑗 ∩ 𝑆 ) ≈ ∅ ↔ ( 𝑆 ∩ 𝑗 ) = ∅ ) |
| 20 | 19 | rexbii | ⊢ ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ ∅ ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑆 ∩ 𝑗 ) = ∅ ) |
| 21 | 15 20 | sylibr | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ ∅ ) |
| 22 | simplrl | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑆 ⊆ ω ) | |
| 23 | omsson | ⊢ ω ⊆ On | |
| 24 | 22 23 | sstrdi | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑆 ⊆ On ) |
| 25 | 24 | ssdifssd | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ On ) |
| 26 | simplr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ¬ 𝑆 ∈ Fin ) | |
| 27 | ssel2 | ⊢ ( ( 𝑆 ⊆ ω ∧ 𝑗 ∈ 𝑆 ) → 𝑗 ∈ ω ) | |
| 28 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 29 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 30 | 28 29 | eqsstri | ⊢ ω ⊆ Fin |
| 31 | peano2 | ⊢ ( 𝑗 ∈ ω → suc 𝑗 ∈ ω ) | |
| 32 | 30 31 | sselid | ⊢ ( 𝑗 ∈ ω → suc 𝑗 ∈ Fin ) |
| 33 | 27 32 | syl | ⊢ ( ( 𝑆 ⊆ ω ∧ 𝑗 ∈ 𝑆 ) → suc 𝑗 ∈ Fin ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → suc 𝑗 ∈ Fin ) |
| 35 | ssfi | ⊢ ( ( suc 𝑗 ∈ Fin ∧ 𝑆 ⊆ suc 𝑗 ) → 𝑆 ∈ Fin ) | |
| 36 | 35 | ex | ⊢ ( suc 𝑗 ∈ Fin → ( 𝑆 ⊆ suc 𝑗 → 𝑆 ∈ Fin ) ) |
| 37 | 34 36 | syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ( 𝑆 ⊆ suc 𝑗 → 𝑆 ∈ Fin ) ) |
| 38 | 26 37 | mtod | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ¬ 𝑆 ⊆ suc 𝑗 ) |
| 39 | ssdif0 | ⊢ ( 𝑆 ⊆ suc 𝑗 ↔ ( 𝑆 ∖ suc 𝑗 ) = ∅ ) | |
| 40 | 39 | necon3bbii | ⊢ ( ¬ 𝑆 ⊆ suc 𝑗 ↔ ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) |
| 41 | 38 40 | sylib | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) |
| 42 | 41 | ad2ant2lr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) |
| 43 | onint | ⊢ ( ( ( 𝑆 ∖ suc 𝑗 ) ⊆ On ∧ ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) → ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ ( 𝑆 ∖ suc 𝑗 ) ) | |
| 44 | 25 42 43 | syl2anc | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ ( 𝑆 ∖ suc 𝑗 ) ) |
| 45 | 44 | eldifad | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ 𝑆 ) |
| 46 | simprr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) | |
| 47 | en2sn | ⊢ ( ( 𝑗 ∈ V ∧ 𝑎 ∈ V ) → { 𝑗 } ≈ { 𝑎 } ) | |
| 48 | 47 | el2v | ⊢ { 𝑗 } ≈ { 𝑎 } |
| 49 | 48 | a1i | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → { 𝑗 } ≈ { 𝑎 } ) |
| 50 | simprl | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑗 ∈ 𝑆 ) | |
| 51 | 22 50 | sseldd | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑗 ∈ ω ) |
| 52 | nnord | ⊢ ( 𝑗 ∈ ω → Ord 𝑗 ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → Ord 𝑗 ) |
| 54 | ordirr | ⊢ ( Ord 𝑗 → ¬ 𝑗 ∈ 𝑗 ) | |
| 55 | elinel1 | ⊢ ( 𝑗 ∈ ( 𝑗 ∩ 𝑆 ) → 𝑗 ∈ 𝑗 ) | |
| 56 | 54 55 | nsyl | ⊢ ( Ord 𝑗 → ¬ 𝑗 ∈ ( 𝑗 ∩ 𝑆 ) ) |
| 57 | disjsn | ⊢ ( ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ↔ ¬ 𝑗 ∈ ( 𝑗 ∩ 𝑆 ) ) | |
| 58 | 56 57 | sylibr | ⊢ ( Ord 𝑗 → ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ) |
| 59 | 53 58 | syl | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ) |
| 60 | nnord | ⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) | |
| 61 | ordirr | ⊢ ( Ord 𝑎 → ¬ 𝑎 ∈ 𝑎 ) | |
| 62 | 60 61 | syl | ⊢ ( 𝑎 ∈ ω → ¬ 𝑎 ∈ 𝑎 ) |
| 63 | disjsn | ⊢ ( ( 𝑎 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ 𝑎 ) | |
| 64 | 62 63 | sylibr | ⊢ ( 𝑎 ∈ ω → ( 𝑎 ∩ { 𝑎 } ) = ∅ ) |
| 65 | 64 | ad2antrr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑎 ∩ { 𝑎 } ) = ∅ ) |
| 66 | unen | ⊢ ( ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ∧ { 𝑗 } ≈ { 𝑎 } ) ∧ ( ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ∧ ( 𝑎 ∩ { 𝑎 } ) = ∅ ) ) → ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ≈ ( 𝑎 ∪ { 𝑎 } ) ) | |
| 67 | 46 49 59 65 66 | syl22anc | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ≈ ( 𝑎 ∪ { 𝑎 } ) ) |
| 68 | simprr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → 𝑏 ∈ 𝑆 ) | |
| 69 | simplrl | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → 𝑆 ⊆ ω ) | |
| 70 | 69 23 | sstrdi | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → 𝑆 ⊆ On ) |
| 71 | ordsuc | ⊢ ( Ord 𝑗 ↔ Ord suc 𝑗 ) | |
| 72 | 53 71 | sylib | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → Ord suc 𝑗 ) |
| 73 | 72 | adantrr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → Ord suc 𝑗 ) |
| 74 | simp2 | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → 𝑆 ⊆ On ) | |
| 75 | 74 | ssdifssd | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ On ) |
| 76 | simpl1 | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ 𝑆 ) | |
| 77 | simpr | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → ¬ 𝑏 ∈ suc 𝑗 ) | |
| 78 | 76 77 | eldifd | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) |
| 79 | 78 | ex | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( ¬ 𝑏 ∈ suc 𝑗 → 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) ) |
| 80 | onnmin | ⊢ ( ( ( 𝑆 ∖ suc 𝑗 ) ⊆ On ∧ 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) → ¬ 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) | |
| 81 | 75 79 80 | syl6an | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( ¬ 𝑏 ∈ suc 𝑗 → ¬ 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) ) |
| 82 | 81 | con4d | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) → 𝑏 ∈ suc 𝑗 ) ) |
| 83 | 82 | imp | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) → 𝑏 ∈ suc 𝑗 ) |
| 84 | simp3 | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → Ord suc 𝑗 ) | |
| 85 | ordsucss | ⊢ ( Ord suc 𝑗 → ( 𝑏 ∈ suc 𝑗 → suc 𝑏 ⊆ suc 𝑗 ) ) | |
| 86 | 84 85 | syl | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ suc 𝑗 → suc 𝑏 ⊆ suc 𝑗 ) ) |
| 87 | 86 | imp | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → suc 𝑏 ⊆ suc 𝑗 ) |
| 88 | 87 | sscond | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ ( 𝑆 ∖ suc 𝑏 ) ) |
| 89 | intss | ⊢ ( ( 𝑆 ∖ suc 𝑗 ) ⊆ ( 𝑆 ∖ suc 𝑏 ) → ∩ ( 𝑆 ∖ suc 𝑏 ) ⊆ ∩ ( 𝑆 ∖ suc 𝑗 ) ) | |
| 90 | 88 89 | syl | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → ∩ ( 𝑆 ∖ suc 𝑏 ) ⊆ ∩ ( 𝑆 ∖ suc 𝑗 ) ) |
| 91 | simpl2 | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑆 ⊆ On ) | |
| 92 | ordelon | ⊢ ( ( Ord suc 𝑗 ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ On ) | |
| 93 | 84 92 | sylan | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ On ) |
| 94 | onmindif | ⊢ ( ( 𝑆 ⊆ On ∧ 𝑏 ∈ On ) → 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑏 ) ) | |
| 95 | 91 93 94 | syl2anc | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑏 ) ) |
| 96 | 90 95 | sseldd | ⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) |
| 97 | 83 96 | impbida | ⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ suc 𝑗 ) ) |
| 98 | 68 70 73 97 | syl3anc | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ suc 𝑗 ) ) |
| 99 | df-suc | ⊢ suc 𝑗 = ( 𝑗 ∪ { 𝑗 } ) | |
| 100 | 99 | eleq2i | ⊢ ( 𝑏 ∈ suc 𝑗 ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) |
| 101 | 98 100 | bitrdi | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) ) |
| 102 | 101 | expr | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑏 ∈ 𝑆 → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) ) ) |
| 103 | 102 | pm5.32rd | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ∧ 𝑏 ∈ 𝑆 ) ↔ ( 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ∧ 𝑏 ∈ 𝑆 ) ) ) |
| 104 | elin | ⊢ ( 𝑏 ∈ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ↔ ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ∧ 𝑏 ∈ 𝑆 ) ) | |
| 105 | elin | ⊢ ( 𝑏 ∈ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ↔ ( 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ∧ 𝑏 ∈ 𝑆 ) ) | |
| 106 | 103 104 105 | 3bitr4g | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑏 ∈ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ↔ 𝑏 ∈ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ) ) |
| 107 | 106 | eqrdv | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ) |
| 108 | indir | ⊢ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) = ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) | |
| 109 | 107 108 | eqtrdi | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) ) |
| 110 | snssi | ⊢ ( 𝑗 ∈ 𝑆 → { 𝑗 } ⊆ 𝑆 ) | |
| 111 | dfss2 | ⊢ ( { 𝑗 } ⊆ 𝑆 ↔ ( { 𝑗 } ∩ 𝑆 ) = { 𝑗 } ) | |
| 112 | 110 111 | sylib | ⊢ ( 𝑗 ∈ 𝑆 → ( { 𝑗 } ∩ 𝑆 ) = { 𝑗 } ) |
| 113 | 112 | uneq2d | ⊢ ( 𝑗 ∈ 𝑆 → ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) = ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ) |
| 114 | 113 | ad2antrl | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) = ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ) |
| 115 | 109 114 | eqtrd | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ) |
| 116 | df-suc | ⊢ suc 𝑎 = ( 𝑎 ∪ { 𝑎 } ) | |
| 117 | 116 | a1i | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → suc 𝑎 = ( 𝑎 ∪ { 𝑎 } ) ) |
| 118 | 67 115 117 | 3brtr4d | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) |
| 119 | ineq1 | ⊢ ( 𝑏 = ∩ ( 𝑆 ∖ suc 𝑗 ) → ( 𝑏 ∩ 𝑆 ) = ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ) | |
| 120 | 119 | breq1d | ⊢ ( 𝑏 = ∩ ( 𝑆 ∖ suc 𝑗 ) → ( ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ↔ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
| 121 | 120 | rspcev | ⊢ ( ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ 𝑆 ∧ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) → ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ) |
| 122 | 45 118 121 | syl2anc | ⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ) |
| 123 | 122 | rexlimdvaa | ⊢ ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 → ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
| 124 | ineq1 | ⊢ ( 𝑏 = 𝑗 → ( 𝑏 ∩ 𝑆 ) = ( 𝑗 ∩ 𝑆 ) ) | |
| 125 | 124 | breq1d | ⊢ ( 𝑏 = 𝑗 → ( ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ↔ ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
| 126 | 125 | cbvrexvw | ⊢ ( ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) |
| 127 | 123 126 | imbitrdi | ⊢ ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
| 128 | 127 | ex | ⊢ ( 𝑎 ∈ ω → ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) ) |
| 129 | 2 4 6 21 128 | finds2 | ⊢ ( 𝑖 ∈ ω → ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 130 | 129 | impcom | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |