This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem23 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem26 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) | |
| 2 | ensym | ⊢ ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 → 𝑖 ≈ ( 𝑎 ∩ 𝑆 ) ) | |
| 3 | entr | ⊢ ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ 𝑖 ≈ ( 𝑎 ∩ 𝑆 ) ) → ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ) |
| 5 | simpl | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑆 ⊆ ω ) | |
| 6 | simprl | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑗 ∈ 𝑆 ) | |
| 7 | 5 6 | sseldd | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑗 ∈ ω ) |
| 8 | nnfi | ⊢ ( 𝑗 ∈ ω → 𝑗 ∈ Fin ) | |
| 9 | inss1 | ⊢ ( 𝑗 ∩ 𝑆 ) ⊆ 𝑗 | |
| 10 | ssfi | ⊢ ( ( 𝑗 ∈ Fin ∧ ( 𝑗 ∩ 𝑆 ) ⊆ 𝑗 ) → ( 𝑗 ∩ 𝑆 ) ∈ Fin ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝑗 ∈ ω → ( 𝑗 ∩ 𝑆 ) ∈ Fin ) |
| 12 | 7 11 | syl | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑗 ∩ 𝑆 ) ∈ Fin ) |
| 13 | simprr | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ 𝑆 ) | |
| 14 | 5 13 | sseldd | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ ω ) |
| 15 | nnfi | ⊢ ( 𝑎 ∈ ω → 𝑎 ∈ Fin ) | |
| 16 | inss1 | ⊢ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 | |
| 17 | ssfi | ⊢ ( ( 𝑎 ∈ Fin ∧ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 ) → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( 𝑎 ∈ ω → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) |
| 19 | 14 18 | syl | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) |
| 20 | nnord | ⊢ ( 𝑗 ∈ ω → Ord 𝑗 ) | |
| 21 | nnord | ⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) | |
| 22 | ordtri2or2 | ⊢ ( ( Ord 𝑗 ∧ Ord 𝑎 ) → ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝑗 ∈ ω ∧ 𝑎 ∈ ω ) → ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) ) |
| 24 | 7 14 23 | syl2anc | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) ) |
| 25 | ssrin | ⊢ ( 𝑗 ⊆ 𝑎 → ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ) | |
| 26 | ssrin | ⊢ ( 𝑎 ⊆ 𝑗 → ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) | |
| 27 | 25 26 | orim12i | ⊢ ( ( 𝑗 ⊆ 𝑎 ∨ 𝑎 ⊆ 𝑗 ) → ( ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ∨ ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) ) |
| 28 | 24 27 | syl | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ∨ ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) ) |
| 29 | fin23lem25 | ⊢ ( ( ( 𝑗 ∩ 𝑆 ) ∈ Fin ∧ ( 𝑎 ∩ 𝑆 ) ∈ Fin ∧ ( ( 𝑗 ∩ 𝑆 ) ⊆ ( 𝑎 ∩ 𝑆 ) ∨ ( 𝑎 ∩ 𝑆 ) ⊆ ( 𝑗 ∩ 𝑆 ) ) ) → ( ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ↔ ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) ) | |
| 30 | 12 19 28 29 | syl3anc | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ↔ ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) ) |
| 31 | ordom | ⊢ Ord ω | |
| 32 | fin23lem24 | ⊢ ( ( ( Ord ω ∧ 𝑆 ⊆ ω ) ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ↔ 𝑗 = 𝑎 ) ) | |
| 33 | 31 32 | mpanl1 | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ↔ 𝑗 = 𝑎 ) ) |
| 34 | 30 33 | bitrd | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑗 ∩ 𝑆 ) ≈ ( 𝑎 ∩ 𝑆 ) ↔ 𝑗 = 𝑎 ) ) |
| 35 | 4 34 | imbitrid | ⊢ ( ( 𝑆 ⊆ ω ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) ) → ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) |
| 36 | 35 | ralrimivva | ⊢ ( 𝑆 ⊆ ω → ∀ 𝑗 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆 ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∀ 𝑗 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆 ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) |
| 38 | ineq1 | ⊢ ( 𝑗 = 𝑎 → ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) | |
| 39 | 38 | breq1d | ⊢ ( 𝑗 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 40 | 39 | reu4 | ⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ∀ 𝑗 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆 ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ∧ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) → 𝑗 = 𝑎 ) ) ) |
| 41 | 1 37 40 | sylanbrc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |