This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is ordinal if and only if its successor is ordinal. (Contributed by NM, 3-Apr-1995) Avoid ax-un . (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsuci | ⊢ ( Ord 𝐴 → Ord suc 𝐴 ) | |
| 2 | sucidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) | |
| 3 | ordelord | ⊢ ( ( Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴 ) → Ord 𝐴 ) | |
| 4 | 3 | ex | ⊢ ( Ord suc 𝐴 → ( 𝐴 ∈ suc 𝐴 → Ord 𝐴 ) ) |
| 5 | 2 4 | syl5com | ⊢ ( 𝐴 ∈ V → ( Ord suc 𝐴 → Ord 𝐴 ) ) |
| 6 | sucprc | ⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) | |
| 7 | 6 | eqcomd | ⊢ ( ¬ 𝐴 ∈ V → 𝐴 = suc 𝐴 ) |
| 8 | ordeq | ⊢ ( 𝐴 = suc 𝐴 → ( Ord 𝐴 ↔ Ord suc 𝐴 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ¬ 𝐴 ∈ V → ( Ord 𝐴 ↔ Ord suc 𝐴 ) ) |
| 10 | 9 | biimprd | ⊢ ( ¬ 𝐴 ∈ V → ( Ord suc 𝐴 → Ord 𝐴 ) ) |
| 11 | 5 10 | pm2.61i | ⊢ ( Ord suc 𝐴 → Ord 𝐴 ) |
| 12 | 1 11 | impbii | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |