This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onmindif | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵 ) ) | |
| 2 | ssel2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 3 | ontri1 | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝑥 ) ) | |
| 4 | onsssuc | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) | |
| 5 | 3 4 | bitr3d | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐵 ∈ 𝑥 ↔ 𝑥 ∈ suc 𝐵 ) ) |
| 6 | 5 | con1bid | ⊢ ( ( 𝑥 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥 ) ) |
| 7 | 2 6 | sylan | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥 ) ) |
| 8 | 7 | biimpd | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ On ) → ( ¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥 ) ) |
| 9 | 8 | exp31 | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ On → ( ¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥 ) ) ) ) |
| 10 | 9 | com23 | ⊢ ( 𝐴 ⊆ On → ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥 ) ) ) ) |
| 11 | 10 | imp4b | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵 ) → 𝐵 ∈ 𝑥 ) ) |
| 12 | 1 11 | biimtrid | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) → 𝐵 ∈ 𝑥 ) ) |
| 13 | 12 | ralrimiv | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵 ∈ 𝑥 ) |
| 14 | elintg | ⊢ ( 𝐵 ∈ On → ( 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵 ∈ 𝑥 ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → ( 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ suc 𝐵 ) 𝐵 ∈ 𝑥 ) ) |
| 16 | 13 15 | mpbird | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ ∩ ( 𝐴 ∖ suc 𝐵 ) ) |