This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity of union of disjoint sets. Theorem 4 of Suppes p. 92. (Contributed by NM, 11-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unen | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | ⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 2 | bren | ⊢ ( 𝐶 ≈ 𝐷 ↔ ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) | |
| 3 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 4 5 | unex | ⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
| 7 | f1oun | ⊢ ( ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝑥 ∪ 𝑦 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ) | |
| 8 | f1oen3g | ⊢ ( ( ( 𝑥 ∪ 𝑦 ) ∈ V ∧ ( 𝑥 ∪ 𝑦 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
| 10 | 9 | ex | ⊢ ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
| 11 | 10 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
| 12 | 3 11 | sylbir | ⊢ ( ( ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
| 13 | 1 2 12 | syl2anb | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |