This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of TakeutiZaring p. 36. (Contributed by NM, 18-Feb-2004) (Revised by David Abernethy, 16-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz7.5 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe | ⊢ ( Ord 𝐴 → E We 𝐴 ) | |
| 2 | wefrc | ⊢ ( ( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) | |
| 3 | 1 2 | syl3an1 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |