This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) Avoid ax-un . (Revised by BTernaryTau, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2sn | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 } ≈ { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | ⊢ { 〈 𝐴 , 𝐵 〉 } ∈ V | |
| 2 | f1osng | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 〈 𝐴 , 𝐵 〉 } : { 𝐴 } –1-1-onto→ { 𝐵 } ) | |
| 3 | f1oeq1 | ⊢ ( 𝑓 = { 〈 𝐴 , 𝐵 〉 } → ( 𝑓 : { 𝐴 } –1-1-onto→ { 𝐵 } ↔ { 〈 𝐴 , 𝐵 〉 } : { 𝐴 } –1-1-onto→ { 𝐵 } ) ) | |
| 4 | 3 | spcegv | ⊢ ( { 〈 𝐴 , 𝐵 〉 } ∈ V → ( { 〈 𝐴 , 𝐵 〉 } : { 𝐴 } –1-1-onto→ { 𝐵 } → ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { 𝐵 } ) ) |
| 5 | 1 2 4 | mpsyl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { 𝐵 } ) |
| 6 | snex | ⊢ { 𝐴 } ∈ V | |
| 7 | snex | ⊢ { 𝐵 } ∈ V | |
| 8 | breng | ⊢ ( ( { 𝐴 } ∈ V ∧ { 𝐵 } ∈ V ) → ( { 𝐴 } ≈ { 𝐵 } ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { 𝐵 } ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( { 𝐴 } ≈ { 𝐵 } ↔ ∃ 𝑓 𝑓 : { 𝐴 } –1-1-onto→ { 𝐵 } ) |
| 10 | 5 9 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝐴 } ≈ { 𝐵 } ) |