This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 ) between an infinite subset of _om and _om itself. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem22.b | ⊢ 𝐶 = ( 𝑖 ∈ ω ↦ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) | |
| Assertion | fin23lem22 | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –1-1-onto→ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem22.b | ⊢ 𝐶 = ( 𝑖 ∈ ω ↦ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) | |
| 2 | fin23lem23 | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) | |
| 3 | riotacl | ⊢ ( ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ∈ 𝑆 ) | |
| 4 | 2 3 | syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ∈ 𝑆 ) |
| 5 | simpll | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → 𝑆 ⊆ ω ) | |
| 6 | simpr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) | |
| 7 | 5 6 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ ω ) |
| 8 | nnfi | ⊢ ( 𝑎 ∈ ω → 𝑎 ∈ Fin ) | |
| 9 | infi | ⊢ ( 𝑎 ∈ Fin → ( 𝑎 ∩ 𝑆 ) ∈ Fin ) | |
| 10 | ficardom | ⊢ ( ( 𝑎 ∩ 𝑆 ) ∈ Fin → ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ∈ ω ) | |
| 11 | 7 8 9 10 | 4syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑎 ∈ 𝑆 ) → ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ∈ ω ) |
| 12 | cardnn | ⊢ ( 𝑖 ∈ ω → ( card ‘ 𝑖 ) = 𝑖 ) | |
| 13 | 12 | eqcomd | ⊢ ( 𝑖 ∈ ω → 𝑖 = ( card ‘ 𝑖 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝑖 ∈ ω → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ 𝑖 ) = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ) ) |
| 15 | eqcom | ⊢ ( ( card ‘ 𝑖 ) = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ) | |
| 16 | 14 15 | bitrdi | ⊢ ( 𝑖 ∈ ω → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ) ) |
| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ) ) |
| 18 | simpll | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑆 ⊆ ω ) | |
| 19 | simprr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ 𝑆 ) | |
| 20 | 18 19 | sseldd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ ω ) |
| 21 | nnon | ⊢ ( 𝑎 ∈ ω → 𝑎 ∈ On ) | |
| 22 | onenon | ⊢ ( 𝑎 ∈ On → 𝑎 ∈ dom card ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑎 ∈ dom card ) |
| 24 | inss1 | ⊢ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 | |
| 25 | ssnum | ⊢ ( ( 𝑎 ∈ dom card ∧ ( 𝑎 ∩ 𝑆 ) ⊆ 𝑎 ) → ( 𝑎 ∩ 𝑆 ) ∈ dom card ) | |
| 26 | 23 24 25 | sylancl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑎 ∩ 𝑆 ) ∈ dom card ) |
| 27 | nnon | ⊢ ( 𝑖 ∈ ω → 𝑖 ∈ On ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑖 ∈ On ) |
| 29 | onenon | ⊢ ( 𝑖 ∈ On → 𝑖 ∈ dom card ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → 𝑖 ∈ dom card ) |
| 31 | carden2 | ⊢ ( ( ( 𝑎 ∩ 𝑆 ) ∈ dom card ∧ 𝑖 ∈ dom card ) → ( ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) | |
| 32 | 26 30 31 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( ( card ‘ ( 𝑎 ∩ 𝑆 ) ) = ( card ‘ 𝑖 ) ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 33 | 2 | adantrr | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |
| 34 | ineq1 | ⊢ ( 𝑗 = 𝑎 → ( 𝑗 ∩ 𝑆 ) = ( 𝑎 ∩ 𝑆 ) ) | |
| 35 | 34 | breq1d | ⊢ ( 𝑗 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ) ) |
| 36 | 35 | riota2 | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ ∃! 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) → ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ↔ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = 𝑎 ) ) |
| 37 | 19 33 36 | syl2anc | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ↔ ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = 𝑎 ) ) |
| 38 | eqcom | ⊢ ( ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) = 𝑎 ↔ 𝑎 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) | |
| 39 | 37 38 | bitrdi | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( ( 𝑎 ∩ 𝑆 ) ≈ 𝑖 ↔ 𝑎 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) ) |
| 40 | 17 32 39 | 3bitrd | ⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ ( 𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆 ) ) → ( 𝑖 = ( card ‘ ( 𝑎 ∩ 𝑆 ) ) ↔ 𝑎 = ( ℩ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) ) |
| 41 | 1 4 11 40 | f1o2d | ⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝐶 : ω –1-1-onto→ 𝑆 ) |