This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem26 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E. j e. S ( j i^i S ) ~~ i ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( i = (/) -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ (/) ) ) |
|
| 2 | 1 | rexbidv | |- ( i = (/) -> ( E. j e. S ( j i^i S ) ~~ i <-> E. j e. S ( j i^i S ) ~~ (/) ) ) |
| 3 | breq2 | |- ( i = a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ a ) ) |
|
| 4 | 3 | rexbidv | |- ( i = a -> ( E. j e. S ( j i^i S ) ~~ i <-> E. j e. S ( j i^i S ) ~~ a ) ) |
| 5 | breq2 | |- ( i = suc a -> ( ( j i^i S ) ~~ i <-> ( j i^i S ) ~~ suc a ) ) |
|
| 6 | 5 | rexbidv | |- ( i = suc a -> ( E. j e. S ( j i^i S ) ~~ i <-> E. j e. S ( j i^i S ) ~~ suc a ) ) |
| 7 | ordom | |- Ord _om |
|
| 8 | simpl | |- ( ( S C_ _om /\ -. S e. Fin ) -> S C_ _om ) |
|
| 9 | 0fi | |- (/) e. Fin |
|
| 10 | eleq1 | |- ( S = (/) -> ( S e. Fin <-> (/) e. Fin ) ) |
|
| 11 | 9 10 | mpbiri | |- ( S = (/) -> S e. Fin ) |
| 12 | 11 | necon3bi | |- ( -. S e. Fin -> S =/= (/) ) |
| 13 | 12 | adantl | |- ( ( S C_ _om /\ -. S e. Fin ) -> S =/= (/) ) |
| 14 | tz7.5 | |- ( ( Ord _om /\ S C_ _om /\ S =/= (/) ) -> E. j e. S ( S i^i j ) = (/) ) |
|
| 15 | 7 8 13 14 | mp3an2i | |- ( ( S C_ _om /\ -. S e. Fin ) -> E. j e. S ( S i^i j ) = (/) ) |
| 16 | en0 | |- ( ( j i^i S ) ~~ (/) <-> ( j i^i S ) = (/) ) |
|
| 17 | incom | |- ( j i^i S ) = ( S i^i j ) |
|
| 18 | 17 | eqeq1i | |- ( ( j i^i S ) = (/) <-> ( S i^i j ) = (/) ) |
| 19 | 16 18 | bitri | |- ( ( j i^i S ) ~~ (/) <-> ( S i^i j ) = (/) ) |
| 20 | 19 | rexbii | |- ( E. j e. S ( j i^i S ) ~~ (/) <-> E. j e. S ( S i^i j ) = (/) ) |
| 21 | 15 20 | sylibr | |- ( ( S C_ _om /\ -. S e. Fin ) -> E. j e. S ( j i^i S ) ~~ (/) ) |
| 22 | simplrl | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> S C_ _om ) |
|
| 23 | omsson | |- _om C_ On |
|
| 24 | 22 23 | sstrdi | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> S C_ On ) |
| 25 | 24 | ssdifssd | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( S \ suc j ) C_ On ) |
| 26 | simplr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> -. S e. Fin ) |
|
| 27 | ssel2 | |- ( ( S C_ _om /\ j e. S ) -> j e. _om ) |
|
| 28 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 29 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 30 | 28 29 | eqsstri | |- _om C_ Fin |
| 31 | peano2 | |- ( j e. _om -> suc j e. _om ) |
|
| 32 | 30 31 | sselid | |- ( j e. _om -> suc j e. Fin ) |
| 33 | 27 32 | syl | |- ( ( S C_ _om /\ j e. S ) -> suc j e. Fin ) |
| 34 | 33 | adantlr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> suc j e. Fin ) |
| 35 | ssfi | |- ( ( suc j e. Fin /\ S C_ suc j ) -> S e. Fin ) |
|
| 36 | 35 | ex | |- ( suc j e. Fin -> ( S C_ suc j -> S e. Fin ) ) |
| 37 | 34 36 | syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> ( S C_ suc j -> S e. Fin ) ) |
| 38 | 26 37 | mtod | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> -. S C_ suc j ) |
| 39 | ssdif0 | |- ( S C_ suc j <-> ( S \ suc j ) = (/) ) |
|
| 40 | 39 | necon3bbii | |- ( -. S C_ suc j <-> ( S \ suc j ) =/= (/) ) |
| 41 | 38 40 | sylib | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ j e. S ) -> ( S \ suc j ) =/= (/) ) |
| 42 | 41 | ad2ant2lr | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( S \ suc j ) =/= (/) ) |
| 43 | onint | |- ( ( ( S \ suc j ) C_ On /\ ( S \ suc j ) =/= (/) ) -> |^| ( S \ suc j ) e. ( S \ suc j ) ) |
|
| 44 | 25 42 43 | syl2anc | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> |^| ( S \ suc j ) e. ( S \ suc j ) ) |
| 45 | 44 | eldifad | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> |^| ( S \ suc j ) e. S ) |
| 46 | simprr | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( j i^i S ) ~~ a ) |
|
| 47 | en2sn | |- ( ( j e. _V /\ a e. _V ) -> { j } ~~ { a } ) |
|
| 48 | 47 | el2v | |- { j } ~~ { a } |
| 49 | 48 | a1i | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> { j } ~~ { a } ) |
| 50 | simprl | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> j e. S ) |
|
| 51 | 22 50 | sseldd | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> j e. _om ) |
| 52 | nnord | |- ( j e. _om -> Ord j ) |
|
| 53 | 51 52 | syl | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> Ord j ) |
| 54 | ordirr | |- ( Ord j -> -. j e. j ) |
|
| 55 | elinel1 | |- ( j e. ( j i^i S ) -> j e. j ) |
|
| 56 | 54 55 | nsyl | |- ( Ord j -> -. j e. ( j i^i S ) ) |
| 57 | disjsn | |- ( ( ( j i^i S ) i^i { j } ) = (/) <-> -. j e. ( j i^i S ) ) |
|
| 58 | 56 57 | sylibr | |- ( Ord j -> ( ( j i^i S ) i^i { j } ) = (/) ) |
| 59 | 53 58 | syl | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( j i^i S ) i^i { j } ) = (/) ) |
| 60 | nnord | |- ( a e. _om -> Ord a ) |
|
| 61 | ordirr | |- ( Ord a -> -. a e. a ) |
|
| 62 | 60 61 | syl | |- ( a e. _om -> -. a e. a ) |
| 63 | disjsn | |- ( ( a i^i { a } ) = (/) <-> -. a e. a ) |
|
| 64 | 62 63 | sylibr | |- ( a e. _om -> ( a i^i { a } ) = (/) ) |
| 65 | 64 | ad2antrr | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( a i^i { a } ) = (/) ) |
| 66 | unen | |- ( ( ( ( j i^i S ) ~~ a /\ { j } ~~ { a } ) /\ ( ( ( j i^i S ) i^i { j } ) = (/) /\ ( a i^i { a } ) = (/) ) ) -> ( ( j i^i S ) u. { j } ) ~~ ( a u. { a } ) ) |
|
| 67 | 46 49 59 65 66 | syl22anc | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( j i^i S ) u. { j } ) ~~ ( a u. { a } ) ) |
| 68 | simprr | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> b e. S ) |
|
| 69 | simplrl | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> S C_ _om ) |
|
| 70 | 69 23 | sstrdi | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> S C_ On ) |
| 71 | ordsuc | |- ( Ord j <-> Ord suc j ) |
|
| 72 | 53 71 | sylib | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> Ord suc j ) |
| 73 | 72 | adantrr | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> Ord suc j ) |
| 74 | simp2 | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> S C_ On ) |
|
| 75 | 74 | ssdifssd | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( S \ suc j ) C_ On ) |
| 76 | simpl1 | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ -. b e. suc j ) -> b e. S ) |
|
| 77 | simpr | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ -. b e. suc j ) -> -. b e. suc j ) |
|
| 78 | 76 77 | eldifd | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ -. b e. suc j ) -> b e. ( S \ suc j ) ) |
| 79 | 78 | ex | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( -. b e. suc j -> b e. ( S \ suc j ) ) ) |
| 80 | onnmin | |- ( ( ( S \ suc j ) C_ On /\ b e. ( S \ suc j ) ) -> -. b e. |^| ( S \ suc j ) ) |
|
| 81 | 75 79 80 | syl6an | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( -. b e. suc j -> -. b e. |^| ( S \ suc j ) ) ) |
| 82 | 81 | con4d | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( b e. |^| ( S \ suc j ) -> b e. suc j ) ) |
| 83 | 82 | imp | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. |^| ( S \ suc j ) ) -> b e. suc j ) |
| 84 | simp3 | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> Ord suc j ) |
|
| 85 | ordsucss | |- ( Ord suc j -> ( b e. suc j -> suc b C_ suc j ) ) |
|
| 86 | 84 85 | syl | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( b e. suc j -> suc b C_ suc j ) ) |
| 87 | 86 | imp | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> suc b C_ suc j ) |
| 88 | 87 | sscond | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> ( S \ suc j ) C_ ( S \ suc b ) ) |
| 89 | intss | |- ( ( S \ suc j ) C_ ( S \ suc b ) -> |^| ( S \ suc b ) C_ |^| ( S \ suc j ) ) |
|
| 90 | 88 89 | syl | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> |^| ( S \ suc b ) C_ |^| ( S \ suc j ) ) |
| 91 | simpl2 | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> S C_ On ) |
|
| 92 | ordelon | |- ( ( Ord suc j /\ b e. suc j ) -> b e. On ) |
|
| 93 | 84 92 | sylan | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> b e. On ) |
| 94 | onmindif | |- ( ( S C_ On /\ b e. On ) -> b e. |^| ( S \ suc b ) ) |
|
| 95 | 91 93 94 | syl2anc | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> b e. |^| ( S \ suc b ) ) |
| 96 | 90 95 | sseldd | |- ( ( ( b e. S /\ S C_ On /\ Ord suc j ) /\ b e. suc j ) -> b e. |^| ( S \ suc j ) ) |
| 97 | 83 96 | impbida | |- ( ( b e. S /\ S C_ On /\ Ord suc j ) -> ( b e. |^| ( S \ suc j ) <-> b e. suc j ) ) |
| 98 | 68 70 73 97 | syl3anc | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> ( b e. |^| ( S \ suc j ) <-> b e. suc j ) ) |
| 99 | df-suc | |- suc j = ( j u. { j } ) |
|
| 100 | 99 | eleq2i | |- ( b e. suc j <-> b e. ( j u. { j } ) ) |
| 101 | 98 100 | bitrdi | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( ( j e. S /\ ( j i^i S ) ~~ a ) /\ b e. S ) ) -> ( b e. |^| ( S \ suc j ) <-> b e. ( j u. { j } ) ) ) |
| 102 | 101 | expr | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( b e. S -> ( b e. |^| ( S \ suc j ) <-> b e. ( j u. { j } ) ) ) ) |
| 103 | 102 | pm5.32rd | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( b e. |^| ( S \ suc j ) /\ b e. S ) <-> ( b e. ( j u. { j } ) /\ b e. S ) ) ) |
| 104 | elin | |- ( b e. ( |^| ( S \ suc j ) i^i S ) <-> ( b e. |^| ( S \ suc j ) /\ b e. S ) ) |
|
| 105 | elin | |- ( b e. ( ( j u. { j } ) i^i S ) <-> ( b e. ( j u. { j } ) /\ b e. S ) ) |
|
| 106 | 103 104 105 | 3bitr4g | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( b e. ( |^| ( S \ suc j ) i^i S ) <-> b e. ( ( j u. { j } ) i^i S ) ) ) |
| 107 | 106 | eqrdv | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) = ( ( j u. { j } ) i^i S ) ) |
| 108 | indir | |- ( ( j u. { j } ) i^i S ) = ( ( j i^i S ) u. ( { j } i^i S ) ) |
|
| 109 | 107 108 | eqtrdi | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) = ( ( j i^i S ) u. ( { j } i^i S ) ) ) |
| 110 | snssi | |- ( j e. S -> { j } C_ S ) |
|
| 111 | dfss2 | |- ( { j } C_ S <-> ( { j } i^i S ) = { j } ) |
|
| 112 | 110 111 | sylib | |- ( j e. S -> ( { j } i^i S ) = { j } ) |
| 113 | 112 | uneq2d | |- ( j e. S -> ( ( j i^i S ) u. ( { j } i^i S ) ) = ( ( j i^i S ) u. { j } ) ) |
| 114 | 113 | ad2antrl | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( ( j i^i S ) u. ( { j } i^i S ) ) = ( ( j i^i S ) u. { j } ) ) |
| 115 | 109 114 | eqtrd | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) = ( ( j i^i S ) u. { j } ) ) |
| 116 | df-suc | |- suc a = ( a u. { a } ) |
|
| 117 | 116 | a1i | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> suc a = ( a u. { a } ) ) |
| 118 | 67 115 117 | 3brtr4d | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> ( |^| ( S \ suc j ) i^i S ) ~~ suc a ) |
| 119 | ineq1 | |- ( b = |^| ( S \ suc j ) -> ( b i^i S ) = ( |^| ( S \ suc j ) i^i S ) ) |
|
| 120 | 119 | breq1d | |- ( b = |^| ( S \ suc j ) -> ( ( b i^i S ) ~~ suc a <-> ( |^| ( S \ suc j ) i^i S ) ~~ suc a ) ) |
| 121 | 120 | rspcev | |- ( ( |^| ( S \ suc j ) e. S /\ ( |^| ( S \ suc j ) i^i S ) ~~ suc a ) -> E. b e. S ( b i^i S ) ~~ suc a ) |
| 122 | 45 118 121 | syl2anc | |- ( ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) /\ ( j e. S /\ ( j i^i S ) ~~ a ) ) -> E. b e. S ( b i^i S ) ~~ suc a ) |
| 123 | 122 | rexlimdvaa | |- ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) -> ( E. j e. S ( j i^i S ) ~~ a -> E. b e. S ( b i^i S ) ~~ suc a ) ) |
| 124 | ineq1 | |- ( b = j -> ( b i^i S ) = ( j i^i S ) ) |
|
| 125 | 124 | breq1d | |- ( b = j -> ( ( b i^i S ) ~~ suc a <-> ( j i^i S ) ~~ suc a ) ) |
| 126 | 125 | cbvrexvw | |- ( E. b e. S ( b i^i S ) ~~ suc a <-> E. j e. S ( j i^i S ) ~~ suc a ) |
| 127 | 123 126 | imbitrdi | |- ( ( a e. _om /\ ( S C_ _om /\ -. S e. Fin ) ) -> ( E. j e. S ( j i^i S ) ~~ a -> E. j e. S ( j i^i S ) ~~ suc a ) ) |
| 128 | 127 | ex | |- ( a e. _om -> ( ( S C_ _om /\ -. S e. Fin ) -> ( E. j e. S ( j i^i S ) ~~ a -> E. j e. S ( j i^i S ) ~~ suc a ) ) ) |
| 129 | 2 4 6 21 128 | finds2 | |- ( i e. _om -> ( ( S C_ _om /\ -. S e. Fin ) -> E. j e. S ( j i^i S ) ~~ i ) ) |
| 130 | 129 | impcom | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E. j e. S ( j i^i S ) ~~ i ) |