This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgred . (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | ||
| efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | ||
| efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | ||
| efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | ||
| efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | ||
| efgredlemb.k | ⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) | ||
| efgredlemb.l | ⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) | ||
| efgredlemb.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | ||
| efgredlemb.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | ||
| efgredlemb.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) | ||
| efgredlemb.v | ⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) | ||
| efgredlemb.6 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | ||
| efgredlemb.7 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | ||
| efgredlemb.8 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) | ||
| efgredlemd.9 | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) | ||
| efgredlemd.c | ⊢ ( 𝜑 → 𝐶 ∈ dom 𝑆 ) | ||
| efgredlemd.sc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) | ||
| Assertion | efgredleme | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | |
| 8 | efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | |
| 9 | efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | |
| 10 | efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | |
| 11 | efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 12 | efgredlemb.k | ⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) | |
| 13 | efgredlemb.l | ⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) | |
| 14 | efgredlemb.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | |
| 15 | efgredlemb.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | |
| 16 | efgredlemb.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) | |
| 17 | efgredlemb.v | ⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) | |
| 18 | efgredlemb.6 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | |
| 19 | efgredlemb.7 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | |
| 20 | efgredlemb.8 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) | |
| 21 | efgredlemd.9 | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) | |
| 22 | efgredlemd.c | ⊢ ( 𝜑 → 𝐶 ∈ dom 𝑆 ) | |
| 23 | efgredlemd.sc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) | |
| 24 | 1 2 3 4 5 6 | efgsf | ⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 25 | 24 | fdmi | ⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 26 | 25 | feq2i | ⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 27 | 24 26 | mpbir | ⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 28 | 27 | ffvelcdmi | ⊢ ( 𝐶 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ) |
| 29 | 22 28 | syl | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ) |
| 30 | elfzuz | ⊢ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) → 𝑄 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 31 | 15 30 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( ℤ≥ ‘ 0 ) ) |
| 32 | 23 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) = ( ♯ ‘ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 33 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 34 | 1 33 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | efgredlemf | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) ) |
| 36 | 35 | simprd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) |
| 37 | 34 36 | sselid | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ) |
| 38 | pfxcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) |
| 40 | 35 | simpld | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ) |
| 41 | 34 40 | sselid | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ) |
| 42 | swrdcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 43 | 41 42 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 44 | ccatlen | ⊢ ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ♯ ‘ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) | |
| 45 | 39 43 44 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 46 | pfxlen | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) = 𝑄 ) | |
| 47 | 37 15 46 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) = 𝑄 ) |
| 48 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 49 | uzaddcl | ⊢ ( ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ 2 ∈ ℕ0 ) → ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 50 | 31 48 49 | sylancl | ⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 51 | elfzuz3 | ⊢ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) | |
| 52 | 14 51 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) |
| 53 | uztrn | ⊢ ( ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) | |
| 54 | 52 21 53 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) |
| 55 | elfzuzb | ⊢ ( ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ↔ ( ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) ) | |
| 56 | 50 54 55 | sylanbrc | ⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 57 | lencl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) | |
| 58 | 41 57 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 59 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 60 | 58 59 | eleqtrdi | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 61 | eluzfz2 | ⊢ ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 63 | swrdlen | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) | |
| 64 | 41 56 62 63 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) |
| 65 | 47 64 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 𝑄 + ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) ) |
| 66 | 15 | elfzelzd | ⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
| 67 | 66 | zcnd | ⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 68 | 58 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℂ ) |
| 69 | 2z | ⊢ 2 ∈ ℤ | |
| 70 | zaddcl | ⊢ ( ( 𝑄 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑄 + 2 ) ∈ ℤ ) | |
| 71 | 66 69 70 | sylancl | ⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ℤ ) |
| 72 | 71 | zcnd | ⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ℂ ) |
| 73 | 67 68 72 | addsubassd | ⊢ ( 𝜑 → ( ( 𝑄 + ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) − ( 𝑄 + 2 ) ) = ( 𝑄 + ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − ( 𝑄 + 2 ) ) ) ) |
| 74 | 2cn | ⊢ 2 ∈ ℂ | |
| 75 | 74 | a1i | ⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 76 | 67 68 75 | pnpcand | ⊢ ( 𝜑 → ( ( 𝑄 + ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) − ( 𝑄 + 2 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ) |
| 77 | 65 73 76 | 3eqtr2d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) + ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ) |
| 78 | 32 45 77 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ) |
| 79 | 14 | elfzelzd | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 80 | zsubcl | ⊢ ( ( 𝑃 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑃 − 2 ) ∈ ℤ ) | |
| 81 | 79 69 80 | sylancl | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ℤ ) |
| 82 | 69 | a1i | ⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 83 | 79 | zcnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 84 | npcan | ⊢ ( ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑃 − 2 ) + 2 ) = 𝑃 ) | |
| 85 | 83 74 84 | sylancl | ⊢ ( 𝜑 → ( ( 𝑃 − 2 ) + 2 ) = 𝑃 ) |
| 86 | 85 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑃 − 2 ) + 2 ) ) = ( ℤ≥ ‘ 𝑃 ) ) |
| 87 | 52 86 | eleqtrrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( ( 𝑃 − 2 ) + 2 ) ) ) |
| 88 | eluzsub | ⊢ ( ( ( 𝑃 − 2 ) ∈ ℤ ∧ 2 ∈ ℤ ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ ( ( 𝑃 − 2 ) + 2 ) ) ) → ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) | |
| 89 | 81 82 87 88 | syl3anc | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) − 2 ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 90 | 78 89 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 91 | eluzsub | ⊢ ( ( 𝑄 ∈ ℤ ∧ 2 ∈ ℤ ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) | |
| 92 | 66 82 21 91 | syl3anc | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 93 | uztrn | ⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) | |
| 94 | 90 92 93 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 95 | elfzuzb | ⊢ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) | |
| 96 | 31 94 95 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| 97 | 1 2 3 4 | efgtval | ⊢ ( ( ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑉 ∈ ( 𝐼 × 2o ) ) → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 98 | 29 96 17 97 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 99 | pfxcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 100 | 41 99 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ) |
| 101 | wrd0 | ⊢ ∅ ∈ Word ( 𝐼 × 2o ) | |
| 102 | 101 | a1i | ⊢ ( 𝜑 → ∅ ∈ Word ( 𝐼 × 2o ) ) |
| 103 | 3 | efgmf | ⊢ 𝑀 : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 104 | 103 | ffvelcdmi | ⊢ ( 𝑉 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑉 ) ∈ ( 𝐼 × 2o ) ) |
| 105 | 17 104 | syl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑉 ) ∈ ( 𝐼 × 2o ) ) |
| 106 | 17 105 | s2cld | ⊢ ( 𝜑 → 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 107 | 66 | zred | ⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 108 | nn0addge1 | ⊢ ( ( 𝑄 ∈ ℝ ∧ 2 ∈ ℕ0 ) → 𝑄 ≤ ( 𝑄 + 2 ) ) | |
| 109 | 107 48 108 | sylancl | ⊢ ( 𝜑 → 𝑄 ≤ ( 𝑄 + 2 ) ) |
| 110 | eluz2 | ⊢ ( ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ↔ ( 𝑄 ∈ ℤ ∧ ( 𝑄 + 2 ) ∈ ℤ ∧ 𝑄 ≤ ( 𝑄 + 2 ) ) ) | |
| 111 | 66 71 109 110 | syl3anbrc | ⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 112 | uztrn | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) → 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) | |
| 113 | 21 111 112 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 114 | elfzuzb | ⊢ ( 𝑄 ∈ ( 0 ... 𝑃 ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) ) | |
| 115 | 31 113 114 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... 𝑃 ) ) |
| 116 | ccatpfx | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ) | |
| 117 | 41 115 14 116 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ) |
| 118 | 117 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 119 | pfxcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 120 | 41 119 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ∈ Word ( 𝐼 × 2o ) ) |
| 121 | 103 | ffvelcdmi | ⊢ ( 𝑈 ∈ ( 𝐼 × 2o ) → ( 𝑀 ‘ 𝑈 ) ∈ ( 𝐼 × 2o ) ) |
| 122 | 16 121 | syl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑈 ) ∈ ( 𝐼 × 2o ) ) |
| 123 | 16 122 | s2cld | ⊢ ( 𝜑 → 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) |
| 124 | swrdcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 125 | 41 124 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 126 | ccatass | ⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) | |
| 127 | 120 123 125 126 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 128 | 1 2 3 4 | efgtval | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ 𝑈 ∈ ( 𝐼 × 2o ) ) → ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) = ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 129 | 40 14 16 128 | syl3anc | ⊢ ( 𝜑 → ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) = ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 130 | splval | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) | |
| 131 | 40 14 14 123 130 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) splice 〈 𝑃 , 𝑃 , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 132 | 18 129 131 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 133 | 1 2 3 4 | efgtval | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ 𝑉 ∈ ( 𝐼 × 2o ) ) → ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) = ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 134 | 36 15 17 133 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) = ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) ) |
| 135 | splval | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) | |
| 136 | 36 15 15 106 135 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 137 | 19 134 136 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 138 | 10 132 137 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑃 ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 139 | 118 127 138 | 3eqtr2d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 140 | swrdcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 141 | 41 140 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 142 | ccatcl | ⊢ ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 143 | 123 125 142 | syl2anc | ⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 144 | ccatass | ⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) | |
| 145 | 100 141 143 144 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) |
| 146 | swrdcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 147 | 37 146 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 148 | ccatass | ⊢ ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) | |
| 149 | 39 106 147 148 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 150 | 139 145 149 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 151 | ccatcl | ⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 152 | 141 143 151 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 153 | ccatcl | ⊢ ( ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 154 | 106 147 153 | syl2anc | ⊢ ( 𝜑 → ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 155 | uztrn | ⊢ ( ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ 𝑄 ) ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) | |
| 156 | 52 113 155 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) |
| 157 | elfzuzb | ⊢ ( 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) | |
| 158 | 31 156 157 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 159 | pfxlen | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = 𝑄 ) | |
| 160 | 41 158 159 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = 𝑄 ) |
| 161 | 160 47 | eqtr4d | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) ) |
| 162 | ccatopth | ⊢ ( ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) ) | |
| 163 | 100 152 39 154 161 162 | syl221anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) ) |
| 164 | 150 163 | mpbid | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 165 | 164 | simpld | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ) |
| 166 | 165 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 167 | ccatrid | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) | |
| 168 | 100 167 | syl | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) = ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) |
| 169 | 168 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 170 | 166 169 23 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ∅ ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 171 | 160 | eqcomd | ⊢ ( 𝜑 → 𝑄 = ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ) ) |
| 172 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 173 | 172 | oveq2i | ⊢ ( 𝑄 + ( ♯ ‘ ∅ ) ) = ( 𝑄 + 0 ) |
| 174 | 67 | addridd | ⊢ ( 𝜑 → ( 𝑄 + 0 ) = 𝑄 ) |
| 175 | 173 174 | eqtr2id | ⊢ ( 𝜑 → 𝑄 = ( 𝑄 + ( ♯ ‘ ∅ ) ) ) |
| 176 | 100 102 43 106 170 171 175 | splval2 | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑄 , 𝑄 , 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 〉 ) = ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 177 | elfzuzb | ⊢ ( 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) | |
| 178 | 31 111 177 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ) |
| 179 | elfzuzb | ⊢ ( ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ↔ ( ( 𝑄 + 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) ) | |
| 180 | 50 21 179 | sylanbrc | ⊢ ( 𝜑 → ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ) |
| 181 | ccatswrd | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) | |
| 182 | 41 178 180 14 181 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ) |
| 183 | 182 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) |
| 184 | swrdcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 185 | 41 184 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 186 | swrdcl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 187 | 41 186 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 188 | ccatass | ⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) | |
| 189 | 185 187 143 188 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) ) |
| 190 | 164 | simprd | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 191 | 183 189 190 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 192 | ccatcl | ⊢ ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 193 | 187 143 192 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 194 | swrdlen | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝑄 + 2 ) − 𝑄 ) ) | |
| 195 | 41 178 56 194 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝑄 + 2 ) − 𝑄 ) ) |
| 196 | pncan2 | ⊢ ( ( 𝑄 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑄 + 2 ) − 𝑄 ) = 2 ) | |
| 197 | 67 74 196 | sylancl | ⊢ ( 𝜑 → ( ( 𝑄 + 2 ) − 𝑄 ) = 2 ) |
| 198 | 195 197 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = 2 ) |
| 199 | s2len | ⊢ ( ♯ ‘ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) = 2 | |
| 200 | 198 199 | eqtr4di | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ♯ ‘ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ) |
| 201 | ccatopth | ⊢ ( ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ♯ ‘ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) | |
| 202 | 185 193 106 147 200 201 | syl221anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ++ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) ) = ( 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 203 | 191 202 | mpbid | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ∧ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 204 | 203 | simpld | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) = 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) |
| 205 | 204 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ) |
| 206 | ccatpfx | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑄 + 2 ) ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ) | |
| 207 | 41 178 56 206 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑄 , ( 𝑄 + 2 ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ) |
| 208 | 205 207 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ) |
| 209 | 208 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) |
| 210 | ccatpfx | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | |
| 211 | 41 56 62 210 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) prefix ( 𝑄 + 2 ) ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) |
| 212 | pfxid | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) = ( 𝐴 ‘ 𝐾 ) ) | |
| 213 | 41 212 | syl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) prefix ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 214 | 209 211 213 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) prefix 𝑄 ) ++ 〈“ 𝑉 ( 𝑀 ‘ 𝑉 ) ”〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 215 | 98 176 214 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) = ( 𝐴 ‘ 𝐾 ) ) |
| 216 | 1 2 3 4 | efgtf | ⊢ ( ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 217 | 29 216 | syl | ⊢ ( 𝜑 → ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) = ( 𝑎 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) , 𝑖 ∈ ( 𝐼 × 2o ) ↦ ( ( 𝑆 ‘ 𝐶 ) splice 〈 𝑎 , 𝑎 , 〈“ 𝑖 ( 𝑀 ‘ 𝑖 ) ”〉 〉 ) ) ∧ ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) ) |
| 218 | 217 | simprd | ⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) : ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ⟶ 𝑊 ) |
| 219 | 218 | ffnd | ⊢ ( 𝜑 → ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ) |
| 220 | fnovrn | ⊢ ( ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ∧ 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑉 ∈ ( 𝐼 × 2o ) ) → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) | |
| 221 | 219 96 17 220 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑉 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 222 | 215 221 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 223 | uztrn | ⊢ ( ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ∧ 𝑄 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 224 | 92 31 223 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 225 | elfzuzb | ⊢ ( ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ↔ ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) ) | |
| 226 | 224 90 225 | sylanbrc | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| 227 | 1 2 3 4 | efgtval | ⊢ ( ( ( 𝑆 ‘ 𝐶 ) ∈ 𝑊 ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑈 ∈ ( 𝐼 × 2o ) ) → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 ( 𝑃 − 2 ) , ( 𝑃 − 2 ) , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 228 | 29 226 16 227 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) = ( ( 𝑆 ‘ 𝐶 ) splice 〈 ( 𝑃 − 2 ) , ( 𝑃 − 2 ) , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) ) |
| 229 | pfxcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 230 | 37 229 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 231 | swrdcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 232 | 37 231 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 233 | ccatswrd | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ∧ ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) ) → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) | |
| 234 | 41 180 14 62 233 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) |
| 235 | 203 | simprd | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 236 | elfzuzb | ⊢ ( 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ↔ ( 𝑄 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 𝑄 ) ) ) | |
| 237 | 31 92 236 | sylanbrc | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ) |
| 238 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | efgredlemg | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 239 | 238 52 | eqeltrrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) |
| 240 | 0le2 | ⊢ 0 ≤ 2 | |
| 241 | 240 | a1i | ⊢ ( 𝜑 → 0 ≤ 2 ) |
| 242 | 79 | zred | ⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 243 | 2re | ⊢ 2 ∈ ℝ | |
| 244 | subge02 | ⊢ ( ( 𝑃 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 0 ≤ 2 ↔ ( 𝑃 − 2 ) ≤ 𝑃 ) ) | |
| 245 | 242 243 244 | sylancl | ⊢ ( 𝜑 → ( 0 ≤ 2 ↔ ( 𝑃 − 2 ) ≤ 𝑃 ) ) |
| 246 | 241 245 | mpbid | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ≤ 𝑃 ) |
| 247 | eluz2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ↔ ( ( 𝑃 − 2 ) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ ( 𝑃 − 2 ) ≤ 𝑃 ) ) | |
| 248 | 81 79 246 247 | syl3anbrc | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 249 | uztrn | ⊢ ( ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) | |
| 250 | 239 248 249 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) |
| 251 | elfzuzb | ⊢ ( ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ↔ ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) ) | |
| 252 | 224 250 251 | sylanbrc | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 253 | lencl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) | |
| 254 | 37 253 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 255 | 254 59 | eleqtrdi | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 256 | eluzfz2 | ⊢ ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | |
| 257 | 255 256 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 258 | ccatswrd | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) | |
| 259 | 37 237 252 257 258 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 260 | 235 259 | eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 261 | swrdcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 262 | 37 261 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 263 | swrdcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 264 | 37 263 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 265 | swrdlen | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑄 + 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) | |
| 266 | 41 180 14 265 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 267 | swrdlen | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝑃 − 2 ) − 𝑄 ) ) | |
| 268 | 37 237 252 267 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝑃 − 2 ) − 𝑄 ) ) |
| 269 | 83 67 75 | sub32d | ⊢ ( 𝜑 → ( ( 𝑃 − 𝑄 ) − 2 ) = ( ( 𝑃 − 2 ) − 𝑄 ) ) |
| 270 | 83 67 75 | subsub4d | ⊢ ( 𝜑 → ( ( 𝑃 − 𝑄 ) − 2 ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 271 | 268 269 270 | 3eqtr2d | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( 𝑃 − ( 𝑄 + 2 ) ) ) |
| 272 | 266 271 | eqtr4d | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ) |
| 273 | ccatopth | ⊢ ( ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ) → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) | |
| 274 | 187 143 262 264 272 273 | syl221anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 275 | 260 274 | mpbid | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∧ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 276 | 275 | simpld | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) |
| 277 | 275 | simprd | ⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 278 | elfzuzb | ⊢ ( ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ↔ ( ( 𝑃 − 2 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 𝑃 − 2 ) ) ) ) | |
| 279 | 224 248 278 | sylanbrc | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ) |
| 280 | elfzuz | ⊢ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) → 𝑃 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 281 | 14 280 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 0 ) ) |
| 282 | elfzuzb | ⊢ ( 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( ℤ≥ ‘ 𝑃 ) ) ) | |
| 283 | 281 239 282 | sylanbrc | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 284 | ccatswrd | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) | |
| 285 | 37 279 283 257 284 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 286 | 277 285 | eqtr4d | ⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 287 | swrdcl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 288 | 37 287 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ) |
| 289 | s2len | ⊢ ( ♯ ‘ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = 2 | |
| 290 | swrdlen | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑃 − 2 ) ) ) | |
| 291 | 37 279 283 290 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( 𝑃 − ( 𝑃 − 2 ) ) ) |
| 292 | nncan | ⊢ ( ( 𝑃 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝑃 − ( 𝑃 − 2 ) ) = 2 ) | |
| 293 | 83 74 292 | sylancl | ⊢ ( 𝜑 → ( 𝑃 − ( 𝑃 − 2 ) ) = 2 ) |
| 294 | 291 293 | eqtr2d | ⊢ ( 𝜑 → 2 = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) |
| 295 | 289 294 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) |
| 296 | ccatopth | ⊢ ( ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) ∧ ( ♯ ‘ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) → ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) | |
| 297 | 123 125 288 232 295 296 | syl221anc | ⊢ ( 𝜑 → ( ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ↔ ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 298 | 286 297 | mpbid | ⊢ ( 𝜑 → ( 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ∧ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 299 | 298 | simprd | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) |
| 300 | 276 299 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , 𝑃 〉 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 301 | 234 300 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) = ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 302 | 301 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 303 | ccatass | ⊢ ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ∈ Word ( 𝐼 × 2o ) ∧ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ∈ Word ( 𝐼 × 2o ) ) → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) | |
| 304 | 39 262 232 303 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) ) |
| 305 | 302 304 | eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 306 | ccatpfx | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑄 ∈ ( 0 ... ( 𝑃 − 2 ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) | |
| 307 | 37 237 252 306 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) |
| 308 | 307 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑄 , ( 𝑃 − 2 ) 〉 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 309 | 23 305 308 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 310 | ccatrid | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ∈ Word ( 𝐼 × 2o ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) | |
| 311 | 230 310 | syl | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) |
| 312 | 311 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 313 | 309 312 | eqtr4d | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ∅ ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 314 | pfxlen | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) = ( 𝑃 − 2 ) ) | |
| 315 | 37 252 314 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) = ( 𝑃 − 2 ) ) |
| 316 | 315 | eqcomd | ⊢ ( 𝜑 → ( 𝑃 − 2 ) = ( ♯ ‘ ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ) ) |
| 317 | 172 | oveq2i | ⊢ ( ( 𝑃 − 2 ) + ( ♯ ‘ ∅ ) ) = ( ( 𝑃 − 2 ) + 0 ) |
| 318 | 81 | zcnd | ⊢ ( 𝜑 → ( 𝑃 − 2 ) ∈ ℂ ) |
| 319 | 318 | addridd | ⊢ ( 𝜑 → ( ( 𝑃 − 2 ) + 0 ) = ( 𝑃 − 2 ) ) |
| 320 | 317 319 | eqtr2id | ⊢ ( 𝜑 → ( 𝑃 − 2 ) = ( ( 𝑃 − 2 ) + ( ♯ ‘ ∅ ) ) ) |
| 321 | 230 102 232 123 313 316 320 | splval2 | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) splice 〈 ( 𝑃 − 2 ) , ( 𝑃 − 2 ) , 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 〉 ) = ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 322 | 298 | simpld | ⊢ ( 𝜑 → 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 = ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) |
| 323 | 322 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) ) |
| 324 | ccatpfx | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ) | |
| 325 | 37 279 283 324 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 ( 𝑃 − 2 ) , 𝑃 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ) |
| 326 | 323 325 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) = ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ) |
| 327 | 326 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) ) |
| 328 | ccatpfx | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ∧ ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | |
| 329 | 37 283 257 328 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑃 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) |
| 330 | pfxid | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) = ( 𝐵 ‘ 𝐿 ) ) | |
| 331 | 37 330 | syl | ⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝐿 ) prefix ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 332 | 327 329 331 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( ( 𝐵 ‘ 𝐿 ) prefix ( 𝑃 − 2 ) ) ++ 〈“ 𝑈 ( 𝑀 ‘ 𝑈 ) ”〉 ) ++ ( ( 𝐵 ‘ 𝐿 ) substr 〈 𝑃 , ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) 〉 ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 333 | 228 321 332 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 334 | fnovrn | ⊢ ( ( ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) Fn ( ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) × ( 𝐼 × 2o ) ) ∧ ( 𝑃 − 2 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ‘ 𝐶 ) ) ) ∧ 𝑈 ∈ ( 𝐼 × 2o ) ) → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) | |
| 335 | 219 226 16 334 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑃 − 2 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) 𝑈 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 336 | 333 335 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 337 | 222 336 | jca | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |