This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | ||
| efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | ||
| efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | ||
| efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | ||
| efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | ||
| efgredlemb.k | ⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) | ||
| efgredlemb.l | ⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) | ||
| efgredlemb.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | ||
| efgredlemb.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | ||
| efgredlemb.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) | ||
| efgredlemb.v | ⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) | ||
| efgredlemb.6 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | ||
| efgredlemb.7 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | ||
| efgredlemb.8 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) | ||
| efgredlemd.9 | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) | ||
| efgredlemd.c | ⊢ ( 𝜑 → 𝐶 ∈ dom 𝑆 ) | ||
| efgredlemd.sc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) | ||
| Assertion | efgredlemd | ⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | |
| 8 | efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | |
| 9 | efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | |
| 10 | efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | |
| 11 | efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 12 | efgredlemb.k | ⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) | |
| 13 | efgredlemb.l | ⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) | |
| 14 | efgredlemb.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | |
| 15 | efgredlemb.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | |
| 16 | efgredlemb.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) | |
| 17 | efgredlemb.v | ⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) | |
| 18 | efgredlemb.6 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | |
| 19 | efgredlemb.7 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | |
| 20 | efgredlemb.8 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝐾 ) = ( 𝐵 ‘ 𝐿 ) ) | |
| 21 | efgredlemd.9 | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 𝑄 + 2 ) ) ) | |
| 22 | efgredlemd.c | ⊢ ( 𝜑 → 𝐶 ∈ dom 𝑆 ) | |
| 23 | efgredlemd.sc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐶 ) = ( ( ( 𝐵 ‘ 𝐿 ) prefix 𝑄 ) ++ ( ( 𝐴 ‘ 𝐾 ) substr 〈 ( 𝑄 + 2 ) , ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) 〉 ) ) ) | |
| 24 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐶 ∈ dom 𝑆 ↔ ( 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐶 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐶 ) ) ( 𝐶 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐶 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 25 | 24 | simp1bi | ⊢ ( 𝐶 ∈ dom 𝑆 → 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 26 | 22 25 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 27 | 26 | eldifad | ⊢ ( 𝜑 → 𝐶 ∈ Word 𝑊 ) |
| 28 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐴 ∈ dom 𝑆 ↔ ( 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐴 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐴 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 29 | 28 | simp1bi | ⊢ ( 𝐴 ∈ dom 𝑆 → 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 30 | 8 29 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 31 | 30 | eldifad | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑊 ) |
| 32 | wrdf | ⊢ ( 𝐴 ∈ Word 𝑊 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑊 ) |
| 34 | fzossfz | ⊢ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) | |
| 35 | lencl | ⊢ ( 𝐴 ∈ Word 𝑊 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 36 | 31 35 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 37 | 36 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 38 | fzoval | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) = ( 0 ... ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 40 | 34 39 | sseqtrrid | ⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 41 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) ) |
| 42 | 41 | simpld | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
| 43 | fzo0end | ⊢ ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 45 | 12 44 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 46 | 40 45 | sseldd | ⊢ ( 𝜑 → 𝐾 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 47 | 33 46 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ) |
| 48 | 47 | s1cld | ⊢ ( 𝜑 → 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ∈ Word 𝑊 ) |
| 49 | eldifsn | ⊢ ( 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝐶 ∈ Word 𝑊 ∧ 𝐶 ≠ ∅ ) ) | |
| 50 | lennncl | ⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ 𝐶 ≠ ∅ ) → ( ♯ ‘ 𝐶 ) ∈ ℕ ) | |
| 51 | 49 50 | sylbi | ⊢ ( 𝐶 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
| 52 | 26 51 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ ) |
| 53 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ↔ ( ♯ ‘ 𝐶 ) ∈ ℕ ) | |
| 54 | 52 53 | sylibr | ⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) |
| 55 | ccatval1 | ⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) | |
| 56 | 27 48 54 55 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 57 | 1 2 3 4 5 6 | efgsdm | ⊢ ( 𝐵 ∈ dom 𝑆 ↔ ( 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ∧ ( 𝐵 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑖 ∈ ( 1 ..^ ( ♯ ‘ 𝐵 ) ) ( 𝐵 ‘ 𝑖 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( 𝑖 − 1 ) ) ) ) ) |
| 58 | 57 | simp1bi | ⊢ ( 𝐵 ∈ dom 𝑆 → 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 59 | 9 58 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( Word 𝑊 ∖ { ∅ } ) ) |
| 60 | 59 | eldifad | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑊 ) |
| 61 | wrdf | ⊢ ( 𝐵 ∈ Word 𝑊 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝑊 ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → 𝐵 : ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ⟶ 𝑊 ) |
| 63 | fzossfz | ⊢ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 0 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) | |
| 64 | lencl | ⊢ ( 𝐵 ∈ Word 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 65 | 60 64 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 66 | 65 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 67 | fzoval | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) = ( 0 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) | |
| 68 | 66 67 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐵 ) ) = ( 0 ... ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 69 | 63 68 | sseqtrrid | ⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 70 | 41 | simprd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) |
| 71 | fzo0end | ⊢ ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ → ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) | |
| 72 | 70 71 | syl | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 73 | 13 72 | eqeltrid | ⊢ ( 𝜑 → 𝐿 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 74 | 69 73 | sseldd | ⊢ ( 𝜑 → 𝐿 ∈ ( 0 ..^ ( ♯ ‘ 𝐵 ) ) ) |
| 75 | 62 74 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) |
| 76 | 75 | s1cld | ⊢ ( 𝜑 → 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ∈ Word 𝑊 ) |
| 77 | ccatval1 | ⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ∈ Word 𝑊 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐶 ) ) ) → ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) | |
| 78 | 27 76 54 77 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 79 | 56 78 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) |
| 80 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 81 | 1 80 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 82 | 81 47 | sselid | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ) |
| 83 | lencl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) | |
| 84 | 82 83 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 85 | 84 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℝ ) |
| 86 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 87 | ltaddrp | ⊢ ( ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) < ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) | |
| 88 | 85 86 87 | sylancl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) < ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 89 | 36 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 90 | 89 | lem1d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 91 | fznn | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) | |
| 92 | 37 91 | syl | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ↔ ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
| 93 | 42 90 92 | mpbir2and | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 94 | 1 2 3 4 5 6 | efgsres | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 95 | 8 93 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 96 | 1 2 3 4 5 6 | efgsval | ⊢ ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ) ) |
| 97 | 95 96 | syl | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ) ) |
| 98 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝐴 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐴 ) ) | |
| 99 | 98 93 | sselid | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) |
| 100 | pfxres | ⊢ ( ( 𝐴 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) | |
| 101 | 31 99 100 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) |
| 102 | 101 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) = ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) |
| 103 | pfxlen | ⊢ ( ( 𝐴 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ) → ( ♯ ‘ ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) | |
| 104 | 31 99 103 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 prefix ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 105 | 102 104 | eqtr3d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 106 | 105 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
| 107 | 106 12 | eqtr4di | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) = 𝐾 ) |
| 108 | 107 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) − 1 ) ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 𝐾 ) ) |
| 109 | 45 | fvresd | ⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 𝐾 ) = ( 𝐴 ‘ 𝐾 ) ) |
| 110 | 97 108 109 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 111 | 110 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) = ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) |
| 112 | 1 2 3 4 5 6 | efgsdmi | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
| 113 | 8 42 112 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
| 114 | 12 | fveq2i | ⊢ ( 𝐴 ‘ 𝐾 ) = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
| 115 | 114 | fveq2i | ⊢ ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
| 116 | 115 | rneqi | ⊢ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
| 117 | 113 116 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) |
| 118 | 1 2 3 4 | efgtlen | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 119 | 47 117 118 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 120 | 88 111 119 | 3brtr4d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 121 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | efgredleme | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) ) |
| 122 | 121 | simpld | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 123 | 1 2 3 4 5 6 | efgsp1 | ⊢ ( ( 𝐶 ∈ dom 𝑆 ∧ ( 𝐴 ‘ 𝐾 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) → ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) |
| 124 | 22 122 123 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) |
| 125 | 1 2 3 4 5 6 | efgsval2 | ⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 126 | 27 47 124 125 | syl3anc | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) = ( 𝐴 ‘ 𝐾 ) ) |
| 127 | 110 126 | eqtr4d | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) ) |
| 128 | 2fveq3 | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) ) | |
| 129 | 128 | breq1d | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 130 | fveqeq2 | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ) ) | |
| 131 | fveq1 | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( 𝑎 ‘ 0 ) = ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) ) | |
| 132 | 131 | eqeq1d | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 133 | 130 132 | imbi12d | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 134 | 129 133 | imbi12d | ⊢ ( 𝑎 = ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 135 | fveq2 | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) ) | |
| 136 | 135 | eqeq2d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) ) ) |
| 137 | fveq1 | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( 𝑏 ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) | |
| 138 | 137 | eqeq2d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) |
| 139 | 136 138 | imbi12d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) |
| 140 | 139 | imbi2d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) ) |
| 141 | 134 140 | rspc2va | ⊢ ( ( ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ∈ dom 𝑆 ∧ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ∈ dom 𝑆 ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) |
| 142 | 95 124 7 141 | syl21anc | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ) → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) ) ) |
| 143 | 120 127 142 | mp2d | ⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐴 ‘ 𝐾 ) ”〉 ) ‘ 0 ) ) |
| 144 | 81 75 | sselid | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ) |
| 145 | lencl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) | |
| 146 | 144 145 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 147 | 146 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℝ ) |
| 148 | ltaddrp | ⊢ ( ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) < ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) | |
| 149 | 147 86 148 | sylancl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) < ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 150 | 65 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 151 | 150 | lem1d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 152 | fznn | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℤ → ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) ) | |
| 153 | 66 152 | syl | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) ) |
| 154 | 70 151 153 | mpbir2and | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 155 | 1 2 3 4 5 6 | efgsres | ⊢ ( ( 𝐵 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 156 | 9 154 155 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 ) |
| 157 | 1 2 3 4 5 6 | efgsval | ⊢ ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) ) ) |
| 158 | 156 157 | syl | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) ) ) |
| 159 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐵 ) ) | |
| 160 | 159 154 | sselid | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 161 | pfxres | ⊢ ( ( 𝐵 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) | |
| 162 | 60 160 161 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) |
| 163 | 162 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) = ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) |
| 164 | pfxlen | ⊢ ( ( 𝐵 ∈ Word 𝑊 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) | |
| 165 | 60 160 164 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 prefix ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 166 | 163 165 | eqtr3d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 167 | 166 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) |
| 168 | 167 13 | eqtr4di | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) = 𝐿 ) |
| 169 | 168 | fveq2d | ⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ ( ( ♯ ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) − 1 ) ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 𝐿 ) ) |
| 170 | 73 | fvresd | ⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 𝐿 ) = ( 𝐵 ‘ 𝐿 ) ) |
| 171 | 158 169 170 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 172 | 171 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 173 | 1 2 3 4 5 6 | efgsdmi | ⊢ ( ( 𝐵 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 174 | 9 70 173 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 175 | 10 174 | eqeltrd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 176 | 13 | fveq2i | ⊢ ( 𝐵 ‘ 𝐿 ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) |
| 177 | 176 | fveq2i | ⊢ ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
| 178 | 177 | rneqi | ⊢ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
| 179 | 175 178 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 180 | 1 2 3 4 | efgtlen | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 181 | 75 179 180 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 182 | 149 172 181 | 3brtr4d | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 183 | 121 | simprd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) |
| 184 | 1 2 3 4 5 6 | efgsp1 | ⊢ ( ( 𝐶 ∈ dom 𝑆 ∧ ( 𝐵 ‘ 𝐿 ) ∈ ran ( 𝑇 ‘ ( 𝑆 ‘ 𝐶 ) ) ) → ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) |
| 185 | 22 183 184 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) |
| 186 | 1 2 3 4 5 6 | efgsval2 | ⊢ ( ( 𝐶 ∈ Word 𝑊 ∧ ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 187 | 27 75 185 186 | syl3anc | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) = ( 𝐵 ‘ 𝐿 ) ) |
| 188 | 171 187 | eqtr4d | ⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) ) |
| 189 | 2fveq3 | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) ) | |
| 190 | 189 | breq1d | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 191 | fveqeq2 | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ) ) | |
| 192 | fveq1 | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( 𝑎 ‘ 0 ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) ) | |
| 193 | 192 | eqeq1d | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 194 | 191 193 | imbi12d | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 195 | 190 194 | imbi12d | ⊢ ( 𝑎 = ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 196 | fveq2 | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) ) | |
| 197 | 196 | eqeq2d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) ) ) |
| 198 | fveq1 | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( 𝑏 ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) | |
| 199 | 198 | eqeq2d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) |
| 200 | 197 199 | imbi12d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) |
| 201 | 200 | imbi2d | ⊢ ( 𝑏 = ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ 𝑏 ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) ) |
| 202 | 195 201 | rspc2va | ⊢ ( ( ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ∈ dom 𝑆 ∧ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ∈ dom 𝑆 ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) |
| 203 | 156 185 7 202 | syl21anc | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ) = ( 𝑆 ‘ ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ) → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) ) ) |
| 204 | 182 188 203 | mp2d | ⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐶 ++ 〈“ ( 𝐵 ‘ 𝐿 ) ”〉 ) ‘ 0 ) ) |
| 205 | 79 143 204 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) ) |
| 206 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) | |
| 207 | 42 206 | sylibr | ⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 208 | 207 | fvresd | ⊢ ( 𝜑 → ( ( 𝐴 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 209 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) | |
| 210 | 70 209 | sylibr | ⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 211 | 210 | fvresd | ⊢ ( 𝜑 → ( ( 𝐵 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 212 | 205 208 211 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |