This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgred . (Contributed by Mario Carneiro, 4-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | ||
| efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | ||
| efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | ||
| efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | ||
| efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | ||
| efgredlemb.k | ⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) | ||
| efgredlemb.l | ⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) | ||
| efgredlemb.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | ||
| efgredlemb.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | ||
| efgredlemb.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) | ||
| efgredlemb.v | ⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) | ||
| efgredlemb.6 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | ||
| efgredlemb.7 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | ||
| Assertion | efgredlemg | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | efgredlem.1 | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | |
| 8 | efgredlem.2 | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑆 ) | |
| 9 | efgredlem.3 | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝑆 ) | |
| 10 | efgredlem.4 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) | |
| 11 | efgredlem.5 | ⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 12 | efgredlemb.k | ⊢ 𝐾 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) | |
| 13 | efgredlemb.l | ⊢ 𝐿 = ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) | |
| 14 | efgredlemb.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ) ) | |
| 15 | efgredlemb.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 0 ... ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) ) | |
| 16 | efgredlemb.u | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝐼 × 2o ) ) | |
| 17 | efgredlemb.v | ⊢ ( 𝜑 → 𝑉 ∈ ( 𝐼 × 2o ) ) | |
| 18 | efgredlemb.6 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑃 ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) 𝑈 ) ) | |
| 19 | efgredlemb.7 | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑄 ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) 𝑉 ) ) | |
| 20 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 21 | 1 20 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | efgredlemf | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ) |
| 24 | 21 23 | sselid | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) ) |
| 25 | lencl | ⊢ ( ( 𝐴 ‘ 𝐾 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℕ0 ) |
| 27 | 26 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) ∈ ℂ ) |
| 28 | 22 | simprd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ) |
| 29 | 21 28 | sselid | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) ) |
| 30 | lencl | ⊢ ( ( 𝐵 ‘ 𝐿 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℕ0 ) |
| 32 | 31 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ∈ ℂ ) |
| 33 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 34 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) ) |
| 35 | 34 | simpld | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) |
| 36 | 1 2 3 4 5 6 | efgsdmi | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
| 37 | 8 35 36 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) ) |
| 38 | 12 | fveq2i | ⊢ ( 𝐴 ‘ 𝐾 ) = ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
| 39 | 38 | fveq2i | ⊢ ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
| 40 | 39 | rneqi | ⊢ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) = ran ( 𝑇 ‘ ( 𝐴 ‘ ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) ) |
| 41 | 37 40 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) |
| 42 | 1 2 3 4 | efgtlen | ⊢ ( ( ( 𝐴 ‘ 𝐾 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐴 ‘ 𝐾 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 43 | 23 41 42 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) ) |
| 44 | 34 | simprd | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) |
| 45 | 1 2 3 4 5 6 | efgsdmi | ⊢ ( ( 𝐵 ∈ dom 𝑆 ∧ ( ( ♯ ‘ 𝐵 ) − 1 ) ∈ ℕ ) → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 46 | 9 44 45 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 47 | 10 46 | eqeltrd | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) ) |
| 48 | 13 | fveq2i | ⊢ ( 𝐵 ‘ 𝐿 ) = ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) |
| 49 | 48 | fveq2i | ⊢ ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
| 50 | 49 | rneqi | ⊢ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) = ran ( 𝑇 ‘ ( 𝐵 ‘ ( ( ( ♯ ‘ 𝐵 ) − 1 ) − 1 ) ) ) |
| 51 | 47 50 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) |
| 52 | 1 2 3 4 | efgtlen | ⊢ ( ( ( 𝐵 ‘ 𝐿 ) ∈ 𝑊 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ran ( 𝑇 ‘ ( 𝐵 ‘ 𝐿 ) ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 53 | 28 51 52 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 54 | 43 53 | eqtr3d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) + 2 ) = ( ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) + 2 ) ) |
| 55 | 27 32 33 54 | addcan2ad | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ‘ 𝐾 ) ) = ( ♯ ‘ ( 𝐵 ‘ 𝐿 ) ) ) |