This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatswrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) = ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ) |
| 3 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ) |
| 5 | ccatcl | ⊢ ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ∈ Word 𝐴 ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ∈ Word 𝐴 ) |
| 7 | wrdfn | ⊢ ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ∈ Word 𝐴 → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) Fn ( 0 ..^ ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) Fn ( 0 ..^ ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) ) |
| 9 | ccatlen | ⊢ ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) = ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) | |
| 10 | 2 4 9 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) = ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) |
| 11 | simpl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 12 | simpr1 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑋 ∈ ( 0 ... 𝑌 ) ) | |
| 13 | simpr2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑌 ∈ ( 0 ... 𝑍 ) ) | |
| 14 | simpr3 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 15 | fzass4 | ⊢ ( ( 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑍 ∈ ( 𝑌 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) | |
| 16 | 15 | biimpri | ⊢ ( ( 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑍 ∈ ( 𝑌 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 17 | 16 | simpld | ⊢ ( ( 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 18 | 13 14 17 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 19 | swrdlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) = ( 𝑌 − 𝑋 ) ) | |
| 20 | 11 12 18 19 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) = ( 𝑌 − 𝑋 ) ) |
| 21 | swrdlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) = ( 𝑍 − 𝑌 ) ) | |
| 22 | 21 | 3adant3r1 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) = ( 𝑍 − 𝑌 ) ) |
| 23 | 20 22 | oveq12d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) = ( ( 𝑌 − 𝑋 ) + ( 𝑍 − 𝑌 ) ) ) |
| 24 | 13 | elfzelzd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑌 ∈ ℤ ) |
| 25 | 24 | zcnd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑌 ∈ ℂ ) |
| 26 | 12 | elfzelzd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑋 ∈ ℤ ) |
| 27 | 26 | zcnd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑋 ∈ ℂ ) |
| 28 | 14 | elfzelzd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑍 ∈ ℤ ) |
| 29 | 28 | zcnd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑍 ∈ ℂ ) |
| 30 | 25 27 29 | npncan3d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑌 − 𝑋 ) + ( 𝑍 − 𝑌 ) ) = ( 𝑍 − 𝑋 ) ) |
| 31 | 10 23 30 | 3eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) = ( 𝑍 − 𝑋 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) = ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) |
| 33 | 32 | fneq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) Fn ( 0 ..^ ( ♯ ‘ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) ↔ ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) Fn ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) ) |
| 34 | 8 33 | mpbid | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) Fn ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) |
| 35 | swrdcl | ⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ∈ Word 𝐴 ) | |
| 36 | 35 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ∈ Word 𝐴 ) |
| 37 | wrdfn | ⊢ ( ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) ) ) |
| 39 | fzass4 | ⊢ ( ( 𝑋 ∈ ( 0 ... 𝑍 ) ∧ 𝑌 ∈ ( 𝑋 ... 𝑍 ) ) ↔ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ) ) | |
| 40 | 39 | biimpri | ⊢ ( ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ) → ( 𝑋 ∈ ( 0 ... 𝑍 ) ∧ 𝑌 ∈ ( 𝑋 ... 𝑍 ) ) ) |
| 41 | 40 | simpld | ⊢ ( ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ) → 𝑋 ∈ ( 0 ... 𝑍 ) ) |
| 42 | 12 13 41 | syl2anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → 𝑋 ∈ ( 0 ... 𝑍 ) ) |
| 43 | swrdlen | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) = ( 𝑍 − 𝑋 ) ) | |
| 44 | 11 42 14 43 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) = ( 𝑍 − 𝑋 ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) ) = ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) |
| 46 | 45 | fneq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) ) ↔ ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) Fn ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) ) |
| 47 | 38 46 | mpbid | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) Fn ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) |
| 48 | 24 26 | zsubcld | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑌 − 𝑋 ) ∈ ℤ ) |
| 49 | 48 | anim1ci | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ∧ ( 𝑌 − 𝑋 ) ∈ ℤ ) ) |
| 50 | fzospliti | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ∧ ( 𝑌 − 𝑋 ) ∈ ℤ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ∨ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ∨ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) ) |
| 52 | 1 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ) |
| 53 | 3 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ) |
| 54 | 20 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) = ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) |
| 55 | 54 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ↔ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) ) |
| 56 | 55 | biimpar | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ) |
| 57 | ccatval1 | ⊢ ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ‘ 𝑥 ) ) | |
| 58 | 52 53 56 57 | syl3anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ‘ 𝑥 ) ) |
| 59 | simpll | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 60 | simplr1 | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → 𝑋 ∈ ( 0 ... 𝑌 ) ) | |
| 61 | 18 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 62 | simpr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) | |
| 63 | swrdfv | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) | |
| 64 | 59 60 61 62 63 | syl31anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 65 | 58 64 | eqtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 66 | 1 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ) |
| 67 | 3 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ) |
| 68 | 23 30 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) = ( 𝑍 − 𝑋 ) ) |
| 69 | 20 68 | oveq12d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ..^ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) = ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) |
| 70 | 69 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 ∈ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ..^ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) ↔ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) ) |
| 71 | 70 | biimpar | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑥 ∈ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ..^ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) ) |
| 72 | ccatval2 | ⊢ ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ∈ Word 𝐴 ∧ 𝑥 ∈ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ..^ ( ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ) ) | |
| 73 | 66 67 71 72 | syl3anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ) ) |
| 74 | simpll | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 75 | simplr2 | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑌 ∈ ( 0 ... 𝑍 ) ) | |
| 76 | simplr3 | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 77 | 20 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) = ( 𝑥 − ( 𝑌 − 𝑋 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) = ( 𝑥 − ( 𝑌 − 𝑋 ) ) ) |
| 79 | 30 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑌 − 𝑋 ) ..^ ( ( 𝑌 − 𝑋 ) + ( 𝑍 − 𝑌 ) ) ) = ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) |
| 80 | 79 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( ( 𝑌 − 𝑋 ) + ( 𝑍 − 𝑌 ) ) ) ↔ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) ) |
| 81 | 80 | biimpar | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( ( 𝑌 − 𝑋 ) + ( 𝑍 − 𝑌 ) ) ) ) |
| 82 | 28 24 | zsubcld | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑍 − 𝑌 ) ∈ ℤ ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑍 − 𝑌 ) ∈ ℤ ) |
| 84 | fzosubel3 | ⊢ ( ( 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( ( 𝑌 − 𝑋 ) + ( 𝑍 − 𝑌 ) ) ) ∧ ( 𝑍 − 𝑌 ) ∈ ℤ ) → ( 𝑥 − ( 𝑌 − 𝑋 ) ) ∈ ( 0 ..^ ( 𝑍 − 𝑌 ) ) ) | |
| 85 | 81 83 84 | syl2anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑥 − ( 𝑌 − 𝑋 ) ) ∈ ( 0 ..^ ( 𝑍 − 𝑌 ) ) ) |
| 86 | 78 85 | eqeltrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ∈ ( 0 ..^ ( 𝑍 − 𝑌 ) ) ) |
| 87 | swrdfv | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ∈ ( 0 ..^ ( 𝑍 − 𝑌 ) ) ) → ( ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ) = ( 𝑆 ‘ ( ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) + 𝑌 ) ) ) | |
| 88 | 74 75 76 86 87 | syl31anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) ) = ( 𝑆 ‘ ( ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) + 𝑌 ) ) ) |
| 89 | 77 | oveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) + 𝑌 ) = ( ( 𝑥 − ( 𝑌 − 𝑋 ) ) + 𝑌 ) ) |
| 90 | 89 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) + 𝑌 ) = ( ( 𝑥 − ( 𝑌 − 𝑋 ) ) + 𝑌 ) ) |
| 91 | elfzoelz | ⊢ ( 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) → 𝑥 ∈ ℤ ) | |
| 92 | 91 | zcnd | ⊢ ( 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) → 𝑥 ∈ ℂ ) |
| 93 | 92 | adantl | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑥 ∈ ℂ ) |
| 94 | 25 27 | subcld | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑌 − 𝑋 ) ∈ ℂ ) |
| 96 | 25 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑌 ∈ ℂ ) |
| 97 | 93 95 96 | subadd23d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( 𝑥 − ( 𝑌 − 𝑋 ) ) + 𝑌 ) = ( 𝑥 + ( 𝑌 − ( 𝑌 − 𝑋 ) ) ) ) |
| 98 | 25 27 | nncand | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑌 − ( 𝑌 − 𝑋 ) ) = 𝑋 ) |
| 99 | 98 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( 𝑥 + ( 𝑌 − ( 𝑌 − 𝑋 ) ) ) = ( 𝑥 + 𝑋 ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑥 + ( 𝑌 − ( 𝑌 − 𝑋 ) ) ) = ( 𝑥 + 𝑋 ) ) |
| 101 | 90 97 100 | 3eqtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) + 𝑌 ) = ( 𝑥 + 𝑋 ) ) |
| 102 | 101 | fveq2d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( 𝑆 ‘ ( ( 𝑥 − ( ♯ ‘ ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ) ) + 𝑌 ) ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 103 | 73 88 102 | 3eqtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 104 | 65 103 | jaodan | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑌 − 𝑋 ) ) ∨ 𝑥 ∈ ( ( 𝑌 − 𝑋 ) ..^ ( 𝑍 − 𝑋 ) ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 105 | 51 104 | syldan | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 106 | simpll | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑆 ∈ Word 𝐴 ) | |
| 107 | 42 | adantr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑋 ∈ ( 0 ... 𝑍 ) ) |
| 108 | simplr3 | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | |
| 109 | simpr | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) | |
| 110 | swrdfv | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) | |
| 111 | 106 107 108 109 110 | syl31anc | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑥 + 𝑋 ) ) ) |
| 112 | 105 111 | eqtr4d | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑍 − 𝑋 ) ) ) → ( ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) ‘ 𝑥 ) = ( ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ‘ 𝑥 ) ) |
| 113 | 34 47 112 | eqfnfvd | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝑋 ∈ ( 0 ... 𝑌 ) ∧ 𝑌 ∈ ( 0 ... 𝑍 ) ∧ 𝑍 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) → ( ( 𝑆 substr 〈 𝑋 , 𝑌 〉 ) ++ ( 𝑆 substr 〈 𝑌 , 𝑍 〉 ) ) = ( 𝑆 substr 〈 𝑋 , 𝑍 〉 ) ) |