This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the auxiliary function S defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgsf | ⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | id | ⊢ ( 𝑚 = 𝑡 → 𝑚 = 𝑡 ) | |
| 8 | fveq2 | ⊢ ( 𝑚 = 𝑡 → ( ♯ ‘ 𝑚 ) = ( ♯ ‘ 𝑡 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑚 = 𝑡 → ( ( ♯ ‘ 𝑚 ) − 1 ) = ( ( ♯ ‘ 𝑡 ) − 1 ) ) |
| 10 | 7 9 | fveq12d | ⊢ ( 𝑚 = 𝑡 → ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) = ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ) |
| 11 | 10 | eleq1d | ⊢ ( 𝑚 = 𝑡 → ( ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 ↔ ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) ) |
| 12 | 11 | ralrab2 | ⊢ ( ∀ 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 ↔ ∀ 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ( ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) ) |
| 13 | eldifi | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝑡 ∈ Word 𝑊 ) | |
| 14 | wrdf | ⊢ ( 𝑡 ∈ Word 𝑊 → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑊 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑊 ) |
| 16 | eldifsn | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ↔ ( 𝑡 ∈ Word 𝑊 ∧ 𝑡 ≠ ∅ ) ) | |
| 17 | lennncl | ⊢ ( ( 𝑡 ∈ Word 𝑊 ∧ 𝑡 ≠ ∅ ) → ( ♯ ‘ 𝑡 ) ∈ ℕ ) | |
| 18 | 16 17 | sylbi | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ♯ ‘ 𝑡 ) ∈ ℕ ) |
| 19 | fzo0end | ⊢ ( ( ♯ ‘ 𝑡 ) ∈ ℕ → ( ( ♯ ‘ 𝑡 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ( ♯ ‘ 𝑡 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ) |
| 21 | 15 20 | ffvelcdmd | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) |
| 22 | 21 | a1d | ⊢ ( 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) → ( ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) → ( 𝑡 ‘ ( ( ♯ ‘ 𝑡 ) − 1 ) ) ∈ 𝑊 ) ) |
| 23 | 12 22 | mprgbir | ⊢ ∀ 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 |
| 24 | 6 | fmpt | ⊢ ( ∀ 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ∈ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 25 | 23 24 | mpbi | ⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |