This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the terminal point. (Contributed by Mario Carneiro, 28-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | ||
| efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | ||
| efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | ||
| efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | ||
| Assertion | efgred | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | efgval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | efgval2.m | ⊢ 𝑀 = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 4 | efgval2.t | ⊢ 𝑇 = ( 𝑣 ∈ 𝑊 ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( 𝑀 ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 5 | efgred.d | ⊢ 𝐷 = ( 𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | efgred.s | ⊢ 𝑆 = ( 𝑚 ∈ { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ↦ ( 𝑚 ‘ ( ( ♯ ‘ 𝑚 ) − 1 ) ) ) | |
| 7 | fviss | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) ⊆ Word ( 𝐼 × 2o ) | |
| 8 | 1 7 | eqsstri | ⊢ 𝑊 ⊆ Word ( 𝐼 × 2o ) |
| 9 | 1 2 3 4 5 6 | efgsf | ⊢ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 |
| 10 | 9 | fdmi | ⊢ dom 𝑆 = { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } |
| 11 | 10 | feq2i | ⊢ ( 𝑆 : dom 𝑆 ⟶ 𝑊 ↔ 𝑆 : { 𝑡 ∈ ( Word 𝑊 ∖ { ∅ } ) ∣ ( ( 𝑡 ‘ 0 ) ∈ 𝐷 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑡 ) ) ( 𝑡 ‘ 𝑘 ) ∈ ran ( 𝑇 ‘ ( 𝑡 ‘ ( 𝑘 − 1 ) ) ) ) } ⟶ 𝑊 ) |
| 12 | 9 11 | mpbir | ⊢ 𝑆 : dom 𝑆 ⟶ 𝑊 |
| 13 | 12 | ffvelcdmi | ⊢ ( 𝐴 ∈ dom 𝑆 → ( 𝑆 ‘ 𝐴 ) ∈ 𝑊 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝐴 ) ∈ 𝑊 ) |
| 15 | 8 14 | sselid | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( 𝑆 ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) ) |
| 16 | lencl | ⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℕ0 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 18 | peano2nn0 | ⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℕ0 → ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ∈ ℕ0 ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ∈ ℕ0 ) |
| 20 | breq2 | ⊢ ( 𝑐 = 0 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 ) ) | |
| 21 | 20 | imbi1d | ⊢ ( 𝑐 = 0 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 22 | 21 | 2ralbidv | ⊢ ( 𝑐 = 0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 23 | breq2 | ⊢ ( 𝑐 = 𝑖 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ) ) | |
| 24 | 23 | imbi1d | ⊢ ( 𝑐 = 𝑖 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 25 | 24 | 2ralbidv | ⊢ ( 𝑐 = 𝑖 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 26 | breq2 | ⊢ ( 𝑐 = ( 𝑖 + 1 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ) ) | |
| 27 | 26 | imbi1d | ⊢ ( 𝑐 = ( 𝑖 + 1 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 28 | 27 | 2ralbidv | ⊢ ( 𝑐 = ( 𝑖 + 1 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 29 | breq2 | ⊢ ( 𝑐 = ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ) ) | |
| 30 | 29 | imbi1d | ⊢ ( 𝑐 = ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 31 | 30 | 2ralbidv | ⊢ ( 𝑐 = ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑐 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 32 | 12 | ffvelcdmi | ⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑎 ) ∈ 𝑊 ) |
| 33 | 8 32 | sselid | ⊢ ( 𝑎 ∈ dom 𝑆 → ( 𝑆 ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) ) |
| 34 | lencl | ⊢ ( ( 𝑆 ‘ 𝑎 ) ∈ Word ( 𝐼 × 2o ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) | |
| 35 | 33 34 | syl | ⊢ ( 𝑎 ∈ dom 𝑆 → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 36 | nn0nlt0 | ⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 → ¬ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 ) | |
| 37 | 35 36 | syl | ⊢ ( 𝑎 ∈ dom 𝑆 → ¬ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 ) |
| 38 | 37 | pm2.21d | ⊢ ( 𝑎 ∈ dom 𝑆 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 40 | 39 | rgen2 | ⊢ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 0 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 41 | simpl1 | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) | |
| 42 | simpl3l | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ) | |
| 43 | breq2 | ⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ) ) | |
| 44 | 43 | imbi1d | ⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 45 | 44 | 2ralbidv | ⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 46 | 42 45 | syl | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 47 | 41 46 | mpbird | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 48 | simpl2l | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → 𝑐 ∈ dom 𝑆 ) | |
| 49 | simpl2r | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → 𝑑 ∈ dom 𝑆 ) | |
| 50 | simpl3r | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) | |
| 51 | simpr | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) → ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) | |
| 52 | 1 2 3 4 5 6 47 48 49 50 51 | efgredlem | ⊢ ¬ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
| 53 | iman | ⊢ ( ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ↔ ¬ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) ∧ ¬ ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) | |
| 54 | 52 53 | mpbir | ⊢ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
| 55 | 54 | 3expia | ⊢ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ∧ ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) |
| 56 | 55 | expd | ⊢ ( ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( 𝑐 ∈ dom 𝑆 ∧ 𝑑 ∈ dom 𝑆 ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) |
| 57 | 56 | ralrimivva | ⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ∀ 𝑐 ∈ dom 𝑆 ∀ 𝑑 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) |
| 58 | 2fveq3 | ⊢ ( 𝑐 = 𝑎 → ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ) | |
| 59 | 58 | eqeq1d | ⊢ ( 𝑐 = 𝑎 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) |
| 60 | fveqeq2 | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) ↔ ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) ) ) | |
| 61 | fveq1 | ⊢ ( 𝑐 = 𝑎 → ( 𝑐 ‘ 0 ) = ( 𝑎 ‘ 0 ) ) | |
| 62 | 61 | eqeq1d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) |
| 63 | 60 62 | imbi12d | ⊢ ( 𝑐 = 𝑎 → ( ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) |
| 64 | 59 63 | imbi12d | ⊢ ( 𝑐 = 𝑎 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ) ) |
| 65 | fveq2 | ⊢ ( 𝑑 = 𝑏 → ( 𝑆 ‘ 𝑑 ) = ( 𝑆 ‘ 𝑏 ) ) | |
| 66 | 65 | eqeq2d | ⊢ ( 𝑑 = 𝑏 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) ↔ ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ) ) |
| 67 | fveq1 | ⊢ ( 𝑑 = 𝑏 → ( 𝑑 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) | |
| 68 | 67 | eqeq2d | ⊢ ( 𝑑 = 𝑏 → ( ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ↔ ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 69 | 66 68 | imbi12d | ⊢ ( 𝑑 = 𝑏 → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 70 | 69 | imbi2d | ⊢ ( 𝑑 = 𝑏 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑎 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 71 | 64 70 | cbvral2vw | ⊢ ( ∀ 𝑐 ∈ dom 𝑆 ∀ 𝑑 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑐 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑑 ) → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 72 | 57 71 | sylib | ⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 73 | 72 | ancli | ⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 74 | 35 | adantr | ⊢ ( ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) |
| 75 | nn0leltp1 | ⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ≤ 𝑖 ↔ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ) ) | |
| 76 | nn0re | ⊢ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℝ ) | |
| 77 | nn0re | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) | |
| 78 | leloe | ⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ≤ 𝑖 ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) | |
| 79 | 76 77 78 | syl2an | ⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ≤ 𝑖 ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 80 | 75 79 | bitr3d | ⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 81 | 80 | ancoms | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 82 | 74 81 | sylan2 | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) ) ) |
| 83 | 82 | imbi1d | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 84 | jaob | ⊢ ( ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 ∨ ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) | |
| 85 | 83 84 | bitrdi | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( 𝑎 ∈ dom 𝑆 ∧ 𝑏 ∈ dom 𝑆 ) ) → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 86 | 85 | 2ralbidva | ⊢ ( 𝑖 ∈ ℕ0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 87 | r19.26-2 | ⊢ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ↔ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) | |
| 88 | 86 87 | bitrdi | ⊢ ( 𝑖 ∈ ℕ0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ∧ ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) ) |
| 89 | 73 88 | imbitrrid | ⊢ ( 𝑖 ∈ ℕ0 → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < 𝑖 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( 𝑖 + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 90 | 22 25 28 31 40 89 | nn0ind | ⊢ ( ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ∈ ℕ0 → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 91 | 19 90 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 92 | 17 | nn0red | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 93 | 92 | ltp1d | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ) |
| 94 | 2fveq3 | ⊢ ( 𝑎 = 𝐴 → ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) ) | |
| 95 | 94 | breq1d | ⊢ ( 𝑎 = 𝐴 → ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ↔ ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) ) ) |
| 96 | fveqeq2 | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) ) ) | |
| 97 | fveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) | |
| 98 | 97 | eqeq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) |
| 99 | 96 98 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) |
| 100 | 95 99 | imbi12d | ⊢ ( 𝑎 = 𝐴 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ) ) |
| 101 | fveq2 | ⊢ ( 𝑏 = 𝐵 → ( 𝑆 ‘ 𝑏 ) = ( 𝑆 ‘ 𝐵 ) ) | |
| 102 | 101 | eqeq2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) ↔ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) ) |
| 103 | fveq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) | |
| 104 | 103 | eqeq2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| 105 | 102 104 | imbi12d | ⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) ) |
| 106 | 105 | imbi2d | ⊢ ( 𝑏 = 𝐵 → ( ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝐴 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) ↔ ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) ) ) |
| 107 | 100 106 | rspc2v | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ∀ 𝑎 ∈ dom 𝑆 ∀ 𝑏 ∈ dom 𝑆 ( ( ♯ ‘ ( 𝑆 ‘ 𝑎 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝑎 ) = ( 𝑆 ‘ 𝑏 ) → ( 𝑎 ‘ 0 ) = ( 𝑏 ‘ 0 ) ) ) → ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) < ( ( ♯ ‘ ( 𝑆 ‘ 𝐴 ) ) + 1 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) ) ) |
| 108 | 91 93 107 | mp2d | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ) → ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| 109 | 108 | 3impia | ⊢ ( ( 𝐴 ∈ dom 𝑆 ∧ 𝐵 ∈ dom 𝑆 ∧ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐵 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |