This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvres . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| dvres.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | ||
| dvres.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | ||
| dvres.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | ||
| dvres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| dvres.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| dvres.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) | ||
| dvres.y | ⊢ ( 𝜑 → 𝑦 ∈ ℂ ) | ||
| Assertion | dvreslem | ⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | dvres.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| 3 | dvres.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 4 | dvres.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 5 | dvres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 6 | dvres.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 7 | dvres.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) | |
| 8 | dvres.y | ⊢ ( 𝜑 → 𝑦 ∈ ℂ ) | |
| 9 | difss | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∩ 𝐵 ) | |
| 10 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 11 | 9 10 | sstri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ 𝐵 |
| 12 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) | |
| 13 | 11 12 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → 𝑧 ∈ 𝐵 ) |
| 14 | 13 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 15 | 1 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 16 | cnex | ⊢ ℂ ∈ V | |
| 17 | ssexg | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) | |
| 18 | 4 16 17 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 19 | resttop | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) | |
| 20 | 15 18 19 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 21 | 2 20 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ Top ) |
| 22 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 23 | 22 6 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑆 ) |
| 24 | 1 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 25 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 26 | 24 4 25 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 27 | 2 26 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ( TopOn ‘ 𝑆 ) ) |
| 28 | toponuni | ⊢ ( 𝑇 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝑇 ) | |
| 29 | 27 28 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ 𝑇 ) |
| 30 | 23 29 | sseqtrd | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝑇 ) |
| 31 | eqid | ⊢ ∪ 𝑇 = ∪ 𝑇 | |
| 32 | 31 | ntrss2 | ⊢ ( ( 𝑇 ∈ Top ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝑇 ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 33 | 21 30 32 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 34 | 33 10 | sstrdi | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐵 ) |
| 35 | 34 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 36 | 35 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 38 | 14 37 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 40 | 39 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
| 41 | 3 | reseq1i | ⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) |
| 42 | ssdif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) ) | |
| 43 | resmpt | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) | |
| 44 | 22 42 43 | mp2b | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 45 | 41 44 | eqtri | ⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 46 | 40 45 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) ) |
| 47 | 46 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
| 48 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 49 | 6 4 | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐴 ⊆ ℂ ) |
| 51 | 33 22 | sstrdi | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐴 ) |
| 52 | 51 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 53 | 48 50 52 | dvlem | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
| 54 | 53 3 | fmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐺 : ( 𝐴 ∖ { 𝑥 } ) ⟶ ℂ ) |
| 55 | 22 42 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) ) |
| 56 | difss | ⊢ ( 𝐴 ∖ { 𝑥 } ) ⊆ 𝐴 | |
| 57 | 56 50 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∖ { 𝑥 } ) ⊆ ℂ ) |
| 58 | eqid | ⊢ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) | |
| 59 | difssd | ⊢ ( 𝜑 → ( ∪ 𝑇 ∖ 𝐴 ) ⊆ ∪ 𝑇 ) | |
| 60 | 30 59 | unssd | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ⊆ ∪ 𝑇 ) |
| 61 | ssun1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) | |
| 62 | 61 | a1i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) |
| 63 | 31 | ntrss | ⊢ ( ( 𝑇 ∈ Top ∧ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ⊆ ∪ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ) |
| 64 | 21 60 62 63 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ) |
| 65 | 64 51 | ssind | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) ) |
| 66 | 6 29 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑇 ) |
| 67 | 22 | a1i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 68 | eqid | ⊢ ( 𝑇 ↾t 𝐴 ) = ( 𝑇 ↾t 𝐴 ) | |
| 69 | 31 68 | restntr | ⊢ ( ( 𝑇 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( ( int ‘ ( 𝑇 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) ) |
| 70 | 21 66 67 69 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) ) |
| 71 | 2 | oveq1i | ⊢ ( 𝑇 ↾t 𝐴 ) = ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐴 ) |
| 72 | 15 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 73 | restabs | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐴 ) = ( 𝐾 ↾t 𝐴 ) ) | |
| 74 | 72 6 18 73 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐴 ) = ( 𝐾 ↾t 𝐴 ) ) |
| 75 | 71 74 | eqtrid | ⊢ ( 𝜑 → ( 𝑇 ↾t 𝐴 ) = ( 𝐾 ↾t 𝐴 ) ) |
| 76 | 75 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( 𝑇 ↾t 𝐴 ) ) = ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ) |
| 77 | 76 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 78 | 70 77 | eqtr3d | ⊢ ( 𝜑 → ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐴 ) ) ) ∩ 𝐴 ) = ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 79 | 65 78 | sseqtrd | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 80 | 79 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 81 | undif1 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) | |
| 82 | 33 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 83 | 82 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → { 𝑥 } ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 84 | 83 22 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → { 𝑥 } ⊆ 𝐴 ) |
| 85 | ssequn2 | ⊢ ( { 𝑥 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) | |
| 86 | 84 85 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∪ { 𝑥 } ) = 𝐴 ) |
| 87 | 81 86 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐴 ) |
| 88 | 87 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( 𝐾 ↾t 𝐴 ) ) |
| 89 | 88 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( int ‘ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) = ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ) |
| 90 | undif1 | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( ( 𝐴 ∩ 𝐵 ) ∪ { 𝑥 } ) | |
| 91 | ssequn2 | ⊢ ( { 𝑥 } ⊆ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∪ { 𝑥 } ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 92 | 83 91 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∪ { 𝑥 } ) = ( 𝐴 ∩ 𝐵 ) ) |
| 93 | 90 92 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝐴 ∩ 𝐵 ) ) |
| 94 | 89 93 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( int ‘ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) ‘ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( ( int ‘ ( 𝐾 ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 95 | 80 94 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) ‘ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) |
| 96 | 54 55 57 1 58 95 | limcres | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) = ( 𝐺 limℂ 𝑥 ) ) |
| 97 | 47 96 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( 𝐺 limℂ 𝑥 ) ) |
| 98 | 97 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ↔ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) |
| 99 | 98 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
| 100 | 7 29 | sseqtrd | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑇 ) |
| 101 | 31 | ntrin | ⊢ ( ( 𝑇 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑇 ∧ 𝐵 ⊆ ∪ 𝑇 ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 102 | 21 66 100 101 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) |
| 103 | 102 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ 𝑥 ∈ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 104 | elin | ⊢ ( 𝑥 ∈ ( ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∩ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) | |
| 105 | 103 104 | bitrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 106 | 105 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
| 107 | 99 106 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
| 108 | an32 | ⊢ ( ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) | |
| 109 | 107 108 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 110 | eqid | ⊢ ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 111 | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) | |
| 112 | 5 111 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
| 113 | 2 1 110 4 112 23 | eldv | ⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 114 | 2 1 3 4 5 6 | eldv | ⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
| 115 | 114 | anbi1cd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ↔ ( ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ∧ 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ) ) ) |
| 116 | 109 113 115 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐵 ) ∧ 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) ) ) |