This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvres . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Commute the consequent and shorten proof. (Revised by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvres.k | |- K = ( TopOpen ` CCfld ) |
|
| dvres.t | |- T = ( K |`t S ) |
||
| dvres.g | |- G = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
||
| dvres.s | |- ( ph -> S C_ CC ) |
||
| dvres.f | |- ( ph -> F : A --> CC ) |
||
| dvres.a | |- ( ph -> A C_ S ) |
||
| dvres.b | |- ( ph -> B C_ S ) |
||
| dvres.y | |- ( ph -> y e. CC ) |
||
| Assertion | dvreslem | |- ( ph -> ( x ( S _D ( F |` B ) ) y <-> ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres.k | |- K = ( TopOpen ` CCfld ) |
|
| 2 | dvres.t | |- T = ( K |`t S ) |
|
| 3 | dvres.g | |- G = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
|
| 4 | dvres.s | |- ( ph -> S C_ CC ) |
|
| 5 | dvres.f | |- ( ph -> F : A --> CC ) |
|
| 6 | dvres.a | |- ( ph -> A C_ S ) |
|
| 7 | dvres.b | |- ( ph -> B C_ S ) |
|
| 8 | dvres.y | |- ( ph -> y e. CC ) |
|
| 9 | difss | |- ( ( A i^i B ) \ { x } ) C_ ( A i^i B ) |
|
| 10 | inss2 | |- ( A i^i B ) C_ B |
|
| 11 | 9 10 | sstri | |- ( ( A i^i B ) \ { x } ) C_ B |
| 12 | simpr | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( ( A i^i B ) \ { x } ) ) -> z e. ( ( A i^i B ) \ { x } ) ) |
|
| 13 | 11 12 | sselid | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( ( A i^i B ) \ { x } ) ) -> z e. B ) |
| 14 | 13 | fvresd | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( ( A i^i B ) \ { x } ) ) -> ( ( F |` B ) ` z ) = ( F ` z ) ) |
| 15 | 1 | cnfldtop | |- K e. Top |
| 16 | cnex | |- CC e. _V |
|
| 17 | ssexg | |- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
|
| 18 | 4 16 17 | sylancl | |- ( ph -> S e. _V ) |
| 19 | resttop | |- ( ( K e. Top /\ S e. _V ) -> ( K |`t S ) e. Top ) |
|
| 20 | 15 18 19 | sylancr | |- ( ph -> ( K |`t S ) e. Top ) |
| 21 | 2 20 | eqeltrid | |- ( ph -> T e. Top ) |
| 22 | inss1 | |- ( A i^i B ) C_ A |
|
| 23 | 22 6 | sstrid | |- ( ph -> ( A i^i B ) C_ S ) |
| 24 | 1 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 25 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
|
| 26 | 24 4 25 | sylancr | |- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 27 | 2 26 | eqeltrid | |- ( ph -> T e. ( TopOn ` S ) ) |
| 28 | toponuni | |- ( T e. ( TopOn ` S ) -> S = U. T ) |
|
| 29 | 27 28 | syl | |- ( ph -> S = U. T ) |
| 30 | 23 29 | sseqtrd | |- ( ph -> ( A i^i B ) C_ U. T ) |
| 31 | eqid | |- U. T = U. T |
|
| 32 | 31 | ntrss2 | |- ( ( T e. Top /\ ( A i^i B ) C_ U. T ) -> ( ( int ` T ) ` ( A i^i B ) ) C_ ( A i^i B ) ) |
| 33 | 21 30 32 | syl2anc | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) C_ ( A i^i B ) ) |
| 34 | 33 10 | sstrdi | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) C_ B ) |
| 35 | 34 | sselda | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> x e. B ) |
| 36 | 35 | fvresd | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 37 | 36 | adantr | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( ( A i^i B ) \ { x } ) ) -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 38 | 14 37 | oveq12d | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( ( A i^i B ) \ { x } ) ) -> ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) = ( ( F ` z ) - ( F ` x ) ) ) |
| 39 | 38 | oveq1d | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( ( A i^i B ) \ { x } ) ) -> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 40 | 39 | mpteq2dva | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) ) |
| 41 | 3 | reseq1i | |- ( G |` ( ( A i^i B ) \ { x } ) ) = ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |` ( ( A i^i B ) \ { x } ) ) |
| 42 | ssdif | |- ( ( A i^i B ) C_ A -> ( ( A i^i B ) \ { x } ) C_ ( A \ { x } ) ) |
|
| 43 | resmpt | |- ( ( ( A i^i B ) \ { x } ) C_ ( A \ { x } ) -> ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |` ( ( A i^i B ) \ { x } ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) ) |
|
| 44 | 22 42 43 | mp2b | |- ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |` ( ( A i^i B ) \ { x } ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 45 | 41 44 | eqtri | |- ( G |` ( ( A i^i B ) \ { x } ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 46 | 40 45 | eqtr4di | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) = ( G |` ( ( A i^i B ) \ { x } ) ) ) |
| 47 | 46 | oveq1d | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( G |` ( ( A i^i B ) \ { x } ) ) limCC x ) ) |
| 48 | 5 | adantr | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> F : A --> CC ) |
| 49 | 6 4 | sstrd | |- ( ph -> A C_ CC ) |
| 50 | 49 | adantr | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> A C_ CC ) |
| 51 | 33 22 | sstrdi | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) C_ A ) |
| 52 | 51 | sselda | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> x e. A ) |
| 53 | 48 50 52 | dvlem | |- ( ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) /\ z e. ( A \ { x } ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) e. CC ) |
| 54 | 53 3 | fmptd | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> G : ( A \ { x } ) --> CC ) |
| 55 | 22 42 | mp1i | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( A i^i B ) \ { x } ) C_ ( A \ { x } ) ) |
| 56 | difss | |- ( A \ { x } ) C_ A |
|
| 57 | 56 50 | sstrid | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( A \ { x } ) C_ CC ) |
| 58 | eqid | |- ( K |`t ( ( A \ { x } ) u. { x } ) ) = ( K |`t ( ( A \ { x } ) u. { x } ) ) |
|
| 59 | difssd | |- ( ph -> ( U. T \ A ) C_ U. T ) |
|
| 60 | 30 59 | unssd | |- ( ph -> ( ( A i^i B ) u. ( U. T \ A ) ) C_ U. T ) |
| 61 | ssun1 | |- ( A i^i B ) C_ ( ( A i^i B ) u. ( U. T \ A ) ) |
|
| 62 | 61 | a1i | |- ( ph -> ( A i^i B ) C_ ( ( A i^i B ) u. ( U. T \ A ) ) ) |
| 63 | 31 | ntrss | |- ( ( T e. Top /\ ( ( A i^i B ) u. ( U. T \ A ) ) C_ U. T /\ ( A i^i B ) C_ ( ( A i^i B ) u. ( U. T \ A ) ) ) -> ( ( int ` T ) ` ( A i^i B ) ) C_ ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ A ) ) ) ) |
| 64 | 21 60 62 63 | syl3anc | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) C_ ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ A ) ) ) ) |
| 65 | 64 51 | ssind | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) C_ ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ A ) ) ) i^i A ) ) |
| 66 | 6 29 | sseqtrd | |- ( ph -> A C_ U. T ) |
| 67 | 22 | a1i | |- ( ph -> ( A i^i B ) C_ A ) |
| 68 | eqid | |- ( T |`t A ) = ( T |`t A ) |
|
| 69 | 31 68 | restntr | |- ( ( T e. Top /\ A C_ U. T /\ ( A i^i B ) C_ A ) -> ( ( int ` ( T |`t A ) ) ` ( A i^i B ) ) = ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ A ) ) ) i^i A ) ) |
| 70 | 21 66 67 69 | syl3anc | |- ( ph -> ( ( int ` ( T |`t A ) ) ` ( A i^i B ) ) = ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ A ) ) ) i^i A ) ) |
| 71 | 2 | oveq1i | |- ( T |`t A ) = ( ( K |`t S ) |`t A ) |
| 72 | 15 | a1i | |- ( ph -> K e. Top ) |
| 73 | restabs | |- ( ( K e. Top /\ A C_ S /\ S e. _V ) -> ( ( K |`t S ) |`t A ) = ( K |`t A ) ) |
|
| 74 | 72 6 18 73 | syl3anc | |- ( ph -> ( ( K |`t S ) |`t A ) = ( K |`t A ) ) |
| 75 | 71 74 | eqtrid | |- ( ph -> ( T |`t A ) = ( K |`t A ) ) |
| 76 | 75 | fveq2d | |- ( ph -> ( int ` ( T |`t A ) ) = ( int ` ( K |`t A ) ) ) |
| 77 | 76 | fveq1d | |- ( ph -> ( ( int ` ( T |`t A ) ) ` ( A i^i B ) ) = ( ( int ` ( K |`t A ) ) ` ( A i^i B ) ) ) |
| 78 | 70 77 | eqtr3d | |- ( ph -> ( ( ( int ` T ) ` ( ( A i^i B ) u. ( U. T \ A ) ) ) i^i A ) = ( ( int ` ( K |`t A ) ) ` ( A i^i B ) ) ) |
| 79 | 65 78 | sseqtrd | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) C_ ( ( int ` ( K |`t A ) ) ` ( A i^i B ) ) ) |
| 80 | 79 | sselda | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> x e. ( ( int ` ( K |`t A ) ) ` ( A i^i B ) ) ) |
| 81 | undif1 | |- ( ( A \ { x } ) u. { x } ) = ( A u. { x } ) |
|
| 82 | 33 | sselda | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> x e. ( A i^i B ) ) |
| 83 | 82 | snssd | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> { x } C_ ( A i^i B ) ) |
| 84 | 83 22 | sstrdi | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> { x } C_ A ) |
| 85 | ssequn2 | |- ( { x } C_ A <-> ( A u. { x } ) = A ) |
|
| 86 | 84 85 | sylib | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( A u. { x } ) = A ) |
| 87 | 81 86 | eqtrid | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( A \ { x } ) u. { x } ) = A ) |
| 88 | 87 | oveq2d | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( K |`t ( ( A \ { x } ) u. { x } ) ) = ( K |`t A ) ) |
| 89 | 88 | fveq2d | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( int ` ( K |`t ( ( A \ { x } ) u. { x } ) ) ) = ( int ` ( K |`t A ) ) ) |
| 90 | undif1 | |- ( ( ( A i^i B ) \ { x } ) u. { x } ) = ( ( A i^i B ) u. { x } ) |
|
| 91 | ssequn2 | |- ( { x } C_ ( A i^i B ) <-> ( ( A i^i B ) u. { x } ) = ( A i^i B ) ) |
|
| 92 | 83 91 | sylib | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( A i^i B ) u. { x } ) = ( A i^i B ) ) |
| 93 | 90 92 | eqtrid | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( ( A i^i B ) \ { x } ) u. { x } ) = ( A i^i B ) ) |
| 94 | 89 93 | fveq12d | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( int ` ( K |`t ( ( A \ { x } ) u. { x } ) ) ) ` ( ( ( A i^i B ) \ { x } ) u. { x } ) ) = ( ( int ` ( K |`t A ) ) ` ( A i^i B ) ) ) |
| 95 | 80 94 | eleqtrrd | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> x e. ( ( int ` ( K |`t ( ( A \ { x } ) u. { x } ) ) ) ` ( ( ( A i^i B ) \ { x } ) u. { x } ) ) ) |
| 96 | 54 55 57 1 58 95 | limcres | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( G |` ( ( A i^i B ) \ { x } ) ) limCC x ) = ( G limCC x ) ) |
| 97 | 47 96 | eqtrd | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) = ( G limCC x ) ) |
| 98 | 97 | eleq2d | |- ( ( ph /\ x e. ( ( int ` T ) ` ( A i^i B ) ) ) -> ( y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) <-> y e. ( G limCC x ) ) ) |
| 99 | 98 | pm5.32da | |- ( ph -> ( ( x e. ( ( int ` T ) ` ( A i^i B ) ) /\ y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> ( x e. ( ( int ` T ) ` ( A i^i B ) ) /\ y e. ( G limCC x ) ) ) ) |
| 100 | 7 29 | sseqtrd | |- ( ph -> B C_ U. T ) |
| 101 | 31 | ntrin | |- ( ( T e. Top /\ A C_ U. T /\ B C_ U. T ) -> ( ( int ` T ) ` ( A i^i B ) ) = ( ( ( int ` T ) ` A ) i^i ( ( int ` T ) ` B ) ) ) |
| 102 | 21 66 100 101 | syl3anc | |- ( ph -> ( ( int ` T ) ` ( A i^i B ) ) = ( ( ( int ` T ) ` A ) i^i ( ( int ` T ) ` B ) ) ) |
| 103 | 102 | eleq2d | |- ( ph -> ( x e. ( ( int ` T ) ` ( A i^i B ) ) <-> x e. ( ( ( int ` T ) ` A ) i^i ( ( int ` T ) ` B ) ) ) ) |
| 104 | elin | |- ( x e. ( ( ( int ` T ) ` A ) i^i ( ( int ` T ) ` B ) ) <-> ( x e. ( ( int ` T ) ` A ) /\ x e. ( ( int ` T ) ` B ) ) ) |
|
| 105 | 103 104 | bitrdi | |- ( ph -> ( x e. ( ( int ` T ) ` ( A i^i B ) ) <-> ( x e. ( ( int ` T ) ` A ) /\ x e. ( ( int ` T ) ` B ) ) ) ) |
| 106 | 105 | anbi1d | |- ( ph -> ( ( x e. ( ( int ` T ) ` ( A i^i B ) ) /\ y e. ( G limCC x ) ) <-> ( ( x e. ( ( int ` T ) ` A ) /\ x e. ( ( int ` T ) ` B ) ) /\ y e. ( G limCC x ) ) ) ) |
| 107 | 99 106 | bitrd | |- ( ph -> ( ( x e. ( ( int ` T ) ` ( A i^i B ) ) /\ y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> ( ( x e. ( ( int ` T ) ` A ) /\ x e. ( ( int ` T ) ` B ) ) /\ y e. ( G limCC x ) ) ) ) |
| 108 | an32 | |- ( ( ( x e. ( ( int ` T ) ` A ) /\ x e. ( ( int ` T ) ` B ) ) /\ y e. ( G limCC x ) ) <-> ( ( x e. ( ( int ` T ) ` A ) /\ y e. ( G limCC x ) ) /\ x e. ( ( int ` T ) ` B ) ) ) |
|
| 109 | 107 108 | bitrdi | |- ( ph -> ( ( x e. ( ( int ` T ) ` ( A i^i B ) ) /\ y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) ) <-> ( ( x e. ( ( int ` T ) ` A ) /\ y e. ( G limCC x ) ) /\ x e. ( ( int ` T ) ` B ) ) ) ) |
| 110 | eqid | |- ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) = ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) |
|
| 111 | fresin | |- ( F : A --> CC -> ( F |` B ) : ( A i^i B ) --> CC ) |
|
| 112 | 5 111 | syl | |- ( ph -> ( F |` B ) : ( A i^i B ) --> CC ) |
| 113 | 2 1 110 4 112 23 | eldv | |- ( ph -> ( x ( S _D ( F |` B ) ) y <-> ( x e. ( ( int ` T ) ` ( A i^i B ) ) /\ y e. ( ( z e. ( ( A i^i B ) \ { x } ) |-> ( ( ( ( F |` B ) ` z ) - ( ( F |` B ) ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 114 | 2 1 3 4 5 6 | eldv | |- ( ph -> ( x ( S _D F ) y <-> ( x e. ( ( int ` T ) ` A ) /\ y e. ( G limCC x ) ) ) ) |
| 115 | 114 | anbi1cd | |- ( ph -> ( ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) <-> ( ( x e. ( ( int ` T ) ` A ) /\ y e. ( G limCC x ) ) /\ x e. ( ( int ` T ) ` B ) ) ) ) |
| 116 | 109 113 115 | 3bitr4d | |- ( ph -> ( x ( S _D ( F |` B ) ) y <-> ( x e. ( ( int ` T ) ` B ) /\ x ( S _D F ) y ) ) ) |