This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝑋 ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝐴 ∩ 𝑋 ) ⊆ 𝐴 | |
| 2 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∩ 𝑋 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) |
| 4 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑋 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) | |
| 5 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 6 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 8 | 7 | reseq1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑋 ) = ( 𝐹 ↾ 𝑋 ) ) |
| 9 | 4 8 | eqtr3id | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) = ( 𝐹 ↾ 𝑋 ) ) |
| 10 | 9 | feq1d | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑋 ) ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝑋 ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) ) |
| 11 | 3 10 | mpbid | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 ↾ 𝑋 ) : ( 𝐴 ∩ 𝑋 ) ⟶ 𝐵 ) |