This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvres2 . (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| dvres.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | ||
| dvres.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | ||
| dvres.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | ||
| dvres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| dvres.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| dvres.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) | ||
| dvres.y | ⊢ ( 𝜑 → 𝑦 ∈ ℂ ) | ||
| dvres2lem.d | ⊢ ( 𝜑 → 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) | ||
| dvres2lem.x | ⊢ ( 𝜑 → 𝑥 ∈ 𝐵 ) | ||
| Assertion | dvres2lem | ⊢ ( 𝜑 → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | dvres.t | ⊢ 𝑇 = ( 𝐾 ↾t 𝑆 ) | |
| 3 | dvres.g | ⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 4 | dvres.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 5 | dvres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 6 | dvres.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 7 | dvres.b | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑆 ) | |
| 8 | dvres.y | ⊢ ( 𝜑 → 𝑦 ∈ ℂ ) | |
| 9 | dvres2lem.d | ⊢ ( 𝜑 → 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ) | |
| 10 | dvres2lem.x | ⊢ ( 𝜑 → 𝑥 ∈ 𝐵 ) | |
| 11 | 1 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 12 | cnex | ⊢ ℂ ∈ V | |
| 13 | ssexg | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) | |
| 14 | 4 12 13 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 15 | resttop | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐾 ↾t 𝑆 ) ∈ Top ) | |
| 16 | 11 14 15 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ Top ) |
| 17 | 2 16 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ Top ) |
| 18 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 19 | 18 6 | sstrid | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝑆 ) |
| 20 | 1 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 21 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 22 | 20 4 21 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 23 | 2 22 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ( TopOn ‘ 𝑆 ) ) |
| 24 | toponuni | ⊢ ( 𝑇 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝑇 ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ 𝑇 ) |
| 26 | 19 25 | sseqtrd | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝑇 ) |
| 27 | difssd | ⊢ ( 𝜑 → ( ∪ 𝑇 ∖ 𝐵 ) ⊆ ∪ 𝑇 ) | |
| 28 | 26 27 | unssd | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ⊆ ∪ 𝑇 ) |
| 29 | inundif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 | |
| 30 | 6 25 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑇 ) |
| 31 | ssdif | ⊢ ( 𝐴 ⊆ ∪ 𝑇 → ( 𝐴 ∖ 𝐵 ) ⊆ ( ∪ 𝑇 ∖ 𝐵 ) ) | |
| 32 | unss2 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ ( ∪ 𝑇 ∖ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) |
| 34 | 29 33 | eqsstrrid | ⊢ ( 𝜑 → 𝐴 ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) |
| 35 | eqid | ⊢ ∪ 𝑇 = ∪ 𝑇 | |
| 36 | 35 | ntrss | ⊢ ( ( 𝑇 ∈ Top ∧ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ⊆ ∪ 𝑇 ∧ 𝐴 ⊆ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) → ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ) |
| 37 | 17 28 34 36 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ) |
| 38 | 2 1 3 4 5 6 | eldv | ⊢ ( 𝜑 → ( 𝑥 ( 𝑆 D 𝐹 ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) ) |
| 39 | 9 38 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) ) |
| 40 | 39 | simpld | ⊢ ( 𝜑 → 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ 𝐴 ) ) |
| 41 | 37 40 | sseldd | ⊢ ( 𝜑 → 𝑥 ∈ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ) |
| 42 | 41 10 | elind | ⊢ ( 𝜑 → 𝑥 ∈ ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) ) |
| 43 | 7 25 | sseqtrd | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ 𝑇 ) |
| 44 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 45 | 44 | a1i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
| 46 | eqid | ⊢ ( 𝑇 ↾t 𝐵 ) = ( 𝑇 ↾t 𝐵 ) | |
| 47 | 35 46 | restntr | ⊢ ( ( 𝑇 ∈ Top ∧ 𝐵 ⊆ ∪ 𝑇 ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) → ( ( int ‘ ( 𝑇 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) ) |
| 48 | 17 43 45 47 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) ) |
| 49 | 2 | oveq1i | ⊢ ( 𝑇 ↾t 𝐵 ) = ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐵 ) |
| 50 | 11 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 51 | restabs | ⊢ ( ( 𝐾 ∈ Top ∧ 𝐵 ⊆ 𝑆 ∧ 𝑆 ∈ V ) → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) ) | |
| 52 | 50 7 14 51 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐾 ↾t 𝑆 ) ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) ) |
| 53 | 49 52 | eqtrid | ⊢ ( 𝜑 → ( 𝑇 ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) ) |
| 54 | 53 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( 𝑇 ↾t 𝐵 ) ) = ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ) |
| 55 | 54 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 56 | 48 55 | eqtr3d | ⊢ ( 𝜑 → ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( ∪ 𝑇 ∖ 𝐵 ) ) ) ∩ 𝐵 ) = ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 57 | 42 56 | eleqtrd | ⊢ ( 𝜑 → 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 58 | limcresi | ⊢ ( 𝐺 limℂ 𝑥 ) ⊆ ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) | |
| 59 | 39 | simprd | ⊢ ( 𝜑 → 𝑦 ∈ ( 𝐺 limℂ 𝑥 ) ) |
| 60 | 58 59 | sselid | ⊢ ( 𝜑 → 𝑦 ∈ ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
| 61 | difss | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∩ 𝐵 ) | |
| 62 | 61 44 | sstri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ 𝐵 |
| 63 | 62 | sseli | ⊢ ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) → 𝑧 ∈ 𝐵 ) |
| 64 | fvres | ⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 65 | 10 | fvresd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 66 | 64 65 | oveqan12rd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 | 66 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 68 | 63 67 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) → ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 69 | 68 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) |
| 70 | 3 | reseq1i | ⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) |
| 71 | ssdif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) ) | |
| 72 | resmpt | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ⊆ ( 𝐴 ∖ { 𝑥 } ) → ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ) | |
| 73 | 18 71 72 | mp2b | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 74 | 70 73 | eqtri | ⊢ ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) |
| 75 | 69 74 | eqtr4di | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) ) |
| 76 | 75 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( 𝐺 ↾ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
| 77 | 60 76 | eleqtrrd | ⊢ ( 𝜑 → 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 78 | eqid | ⊢ ( 𝐾 ↾t 𝐵 ) = ( 𝐾 ↾t 𝐵 ) | |
| 79 | eqid | ⊢ ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 80 | 7 4 | sstrd | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 81 | fresin | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) | |
| 82 | 5 81 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : ( 𝐴 ∩ 𝐵 ) ⟶ ℂ ) |
| 83 | 78 1 79 80 82 45 | eldv | ⊢ ( 𝜑 → ( 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( ( int ‘ ( 𝐾 ↾t 𝐵 ) ) ‘ ( 𝐴 ∩ 𝐵 ) ) ∧ 𝑦 ∈ ( ( 𝑧 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ { 𝑥 } ) ↦ ( ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑧 ) − ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 84 | 57 77 83 | mpbir2and | ⊢ ( 𝜑 → 𝑥 ( 𝐵 D ( 𝐹 ↾ 𝐵 ) ) 𝑦 ) |