This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptcj.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| dvmptcj.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptcj.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| Assertion | dvmptre | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptcj.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 2 | dvmptcj.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | dvmptcj.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 4 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 6 | 1 | cjcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 7 | 1 6 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 8 | 5 1 2 3 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 9 | 8 | cjcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 10 | 8 9 | addcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ∈ ℂ ) |
| 11 | 1 2 3 | dvmptcj | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ 𝐵 ) ) ) |
| 12 | 5 1 2 3 6 9 11 | dvmptadd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) |
| 13 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 15 | 5 7 10 12 14 | dvmptcmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 2 ) · ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 16 | reval | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) | |
| 17 | 1 16 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) |
| 18 | 2cn | ⊢ 2 ∈ ℂ | |
| 19 | 2ne0 | ⊢ 2 ≠ 0 | |
| 20 | divrec2 | ⊢ ( ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) | |
| 21 | 18 19 20 | mp3an23 | ⊢ ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) |
| 22 | 7 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) |
| 23 | 17 22 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℜ ‘ 𝐴 ) = ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) |
| 24 | 23 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 25 | 24 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 2 ) · ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) ) ) ) |
| 26 | reval | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) = ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) ) | |
| 27 | 8 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℜ ‘ 𝐵 ) = ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) ) |
| 28 | divrec2 | ⊢ ( ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) | |
| 29 | 18 19 28 | mp3an23 | ⊢ ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ∈ ℂ → ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) |
| 30 | 10 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 + ( ∗ ‘ 𝐵 ) ) / 2 ) = ( ( 1 / 2 ) · ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) |
| 31 | 27 30 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ℜ ‘ 𝐵 ) = ( ( 1 / 2 ) · ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) |
| 32 | 31 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 2 ) · ( 𝐵 + ( ∗ ‘ 𝐵 ) ) ) ) ) |
| 33 | 15 25 32 | 3eqtr4d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ℜ ‘ 𝐵 ) ) ) |