This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | divccncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / 𝐴 ) ) | |
| Assertion | divccncf | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divccncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 / 𝐴 ) ) | |
| 2 | divrec2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 / 𝐴 ) = ( ( 1 / 𝐴 ) · 𝑥 ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝑥 / 𝐴 ) = ( ( 1 / 𝐴 ) · 𝑥 ) ) |
| 4 | 3 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℂ ) → ( 𝑥 / 𝐴 ) = ( ( 1 / 𝐴 ) · 𝑥 ) ) |
| 5 | 4 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 1 / 𝐴 ) · 𝑥 ) ) ) |
| 6 | 1 5 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐹 = ( 𝑥 ∈ ℂ ↦ ( ( 1 / 𝐴 ) · 𝑥 ) ) ) |
| 7 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 8 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ ( ( 1 / 𝐴 ) · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 1 / 𝐴 ) · 𝑥 ) ) | |
| 9 | 8 | mulc1cncf | ⊢ ( ( 1 / 𝐴 ) ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( ( 1 / 𝐴 ) · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 10 | 7 9 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( ( 1 / 𝐴 ) · 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 | 6 10 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |