This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccss2 | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 2 | 1 | elixx3g | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
| 5 | 4 | simp1d | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 6 | 4 | simp2d | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 7 | 2 | simprbi | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 10 | 1 | elixx3g | ⊢ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ) |
| 11 | 10 | simprbi | ⊢ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) |
| 12 | 11 | simprd | ⊢ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) → 𝐷 ≤ 𝐵 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ≤ 𝐵 ) |
| 14 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝑤 ) → 𝐴 ≤ 𝑤 ) ) | |
| 15 | xrletr | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑤 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵 ) → 𝑤 ≤ 𝐵 ) ) | |
| 16 | 1 1 14 15 | ixxss12 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 17 | 5 6 9 13 16 | syl22anc | ⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |