This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Mean Value Theorem. If F is a real continuous function on [ A , B ] which is differentiable on ( A , B ) , then there is some x e. ( A , B ) such that ( RR _D F )x is equal to the average slope over [ A , B ] . This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014) (Proof shortened by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvth.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| mvth.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mvth.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| mvth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| mvth.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| Assertion | mvth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvth.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | mvth.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mvth.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | mvth.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | mvth.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 6 | mptresid | ⊢ ( I ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) | |
| 7 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 9 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 10 | cncfmptid | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 12 | 6 11 | eqeltrid | ⊢ ( 𝜑 → ( I ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 13 | 6 | eqcomi | ⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) = ( I ↾ ( 𝐴 [,] 𝐵 ) ) |
| 14 | 13 | oveq2i | ⊢ ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ) = ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 15 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) | |
| 18 | 17 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℂ ) |
| 19 | 1red | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ ) → 1 ∈ ℝ ) | |
| 20 | 16 | dvmptid | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ℝ ↦ 𝑧 ) ) = ( 𝑧 ∈ ℝ ↦ 1 ) ) |
| 21 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 22 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 23 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 24 | 1 2 23 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 25 | 16 18 19 20 8 21 22 24 | dvmptres2 | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑧 ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 26 | 14 25 | eqtr3id | ⊢ ( 𝜑 → ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 27 | 26 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) = dom ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) |
| 28 | 1ex | ⊢ 1 ∈ V | |
| 29 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) | |
| 30 | 28 29 | dmmpti | ⊢ dom ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) = ( 𝐴 (,) 𝐵 ) |
| 31 | 27 30 | eqtrdi | ⊢ ( 𝜑 → dom ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 32 | 1 2 3 4 12 5 31 | cmvth | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 33 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 34 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 35 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 36 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 37 | 33 34 35 36 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 38 | fvresi | ⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = 𝐵 ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = 𝐵 ) |
| 40 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 41 | 33 34 35 40 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 42 | fvresi | ⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = 𝐴 ) | |
| 43 | 41 42 | syl | ⊢ ( 𝜑 → ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 44 | 39 43 | oveq12d | ⊢ ( 𝜑 → ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐵 − 𝐴 ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 47 | 26 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) = ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ‘ 𝑥 ) ) |
| 48 | eqidd | ⊢ ( 𝑧 = 𝑥 → 1 = 1 ) | |
| 49 | 48 29 28 | fvmpt3i | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ‘ 𝑥 ) = 1 ) |
| 50 | 47 49 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) = 1 ) |
| 51 | 50 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · 1 ) ) |
| 52 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 53 | 4 52 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 54 | 53 37 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 55 | 53 41 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 56 | 54 55 | resubcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 57 | 56 | recnd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 59 | 58 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · 1 ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 60 | 51 59 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) |
| 61 | 46 60 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) ↔ ( ( 𝐵 − 𝐴 ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 62 | 2 1 | resubcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 63 | 62 | recnd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 65 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 66 | 5 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 67 | 65 66 | mpbii | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 68 | 67 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 69 | 1 2 | posdifd | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 70 | 3 69 | mpbid | ⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 71 | 70 | gt0ne0d | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 73 | 58 64 68 72 | divmuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ↔ ( ( 𝐵 − 𝐴 ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 74 | 61 73 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) ↔ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 75 | eqcom | ⊢ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ↔ ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) ) | |
| 76 | eqcom | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ↔ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) | |
| 77 | 74 75 76 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 78 | 77 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D ( I ↾ ( 𝐴 [,] 𝐵 ) ) ) ‘ 𝑥 ) ) = ( ( ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) − ( ( I ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) ) |
| 79 | 32 78 | mpbid | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) / ( 𝐵 − 𝐴 ) ) ) |