This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptcmul.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| dvmptdivc.0 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
| Assertion | dvmptdivc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptcmul.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 6 | dvmptdivc.0 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
| 7 | 5 6 | reccld | ⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 8 | 1 2 3 4 7 | dvmptcmul | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐵 ) ) ) |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ≠ 0 ) |
| 11 | 2 9 10 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝐴 ) ) |
| 12 | 11 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐴 ) ) ) ) |
| 14 | 1 2 3 4 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 15 | 14 9 10 | divrec2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 / 𝐶 ) = ( ( 1 / 𝐶 ) · 𝐵 ) ) |
| 16 | 15 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1 / 𝐶 ) · 𝐵 ) ) ) |
| 17 | 8 13 16 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |