This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| Assertion | dprdfeq0 | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = 0 ↔ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | 2 3 4 5 6 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 8 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 10 | 2 3 4 5 | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 12 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 dom DProd 𝑆 ) |
| 13 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → dom 𝑆 = 𝐼 ) |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 15 | eqid | ⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) | |
| 16 | 1 2 12 13 14 11 15 | dprdfid | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 16 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝑊 ) |
| 18 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ 𝑊 ) |
| 19 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 20 | 1 2 12 13 17 18 19 | dprdfsub | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f ( -g ‘ 𝐺 ) 𝐹 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐹 ) ) ) ) |
| 21 | 20 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐹 ) ) ) |
| 22 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 24 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 25 | 1 | fvexi | ⊢ 0 ∈ V |
| 26 | 24 25 | ifex | ⊢ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V |
| 27 | 26 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) → if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ∈ V ) |
| 28 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) ∈ V ) | |
| 29 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) | |
| 30 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 31 | 30 | feqmptd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐹 = ( 𝑦 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 32 | 23 27 28 29 31 | offval2 | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f ( -g ‘ 𝐺 ) 𝐹 ) = ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 34 | 16 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg 𝐹 ) = 0 ) | |
| 36 | 34 35 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐹 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) 0 ) ) |
| 37 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 38 | 12 37 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
| 39 | 30 14 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 40 | 6 1 19 | grpsubid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 42 | 36 41 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐹 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 43 | 21 33 42 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 44 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 45 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 46 | 3 37 45 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Mnd ) |
| 48 | 6 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 49 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 50 | 38 48 49 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 51 | imassrn | ⊢ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 | |
| 52 | 3 4 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 54 | 53 | frnd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 55 | mresspw | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) | |
| 56 | 50 55 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 57 | 54 56 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ran 𝑆 ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 58 | 51 57 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 59 | sspwuni | ⊢ ( ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 60 | 58 59 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 61 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 62 | 61 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 63 | 50 60 62 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 64 | subgsubm | ⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 66 | oveq1 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) = ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | |
| 67 | 66 | eleq1d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 68 | oveq1 | ⊢ ( 0 = if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( 0 ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) = ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | |
| 69 | 68 | eleq1d | ⊢ ( 0 = if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) → ( ( 0 ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ↔ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 70 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 71 | 70 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 72 | 71 | oveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 73 | 6 1 19 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 74 | 38 39 73 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 75 | 1 | subg0cl | ⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 76 | 63 75 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 77 | 74 76 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 79 | 72 78 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 80 | 63 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 81 | 80 75 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 82 | 50 61 60 | mrcssidd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 83 | 82 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 84 | 2 12 13 18 | dprdfcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
| 85 | 84 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
| 86 | 53 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 Fn 𝐼 ) |
| 87 | 86 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → 𝑆 Fn 𝐼 ) |
| 88 | difssd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 ) | |
| 89 | df-ne | ⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑦 = 𝑥 ) | |
| 90 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥 ) ) | |
| 91 | 90 | biimpri | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥 ) → 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) |
| 92 | 89 91 | sylan2br | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ ¬ 𝑦 = 𝑥 ) → 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) |
| 93 | 92 | adantll | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) |
| 94 | fnfvima | ⊢ ( ( 𝑆 Fn 𝐼 ∧ ( 𝐼 ∖ { 𝑥 } ) ⊆ 𝐼 ∧ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → ( 𝑆 ‘ 𝑦 ) ∈ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) | |
| 95 | 87 88 93 94 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( 𝑆 ‘ 𝑦 ) ∈ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 96 | elunii | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ∧ ( 𝑆 ‘ 𝑦 ) ∈ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) | |
| 97 | 85 95 96 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) |
| 98 | 83 97 | sseldd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 99 | 19 | subgsubcl | ⊢ ( ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) → ( 0 ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 100 | 80 81 98 99 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) ∧ ¬ 𝑦 = 𝑥 ) → ( 0 ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 101 | 67 69 79 100 | ifbothda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐼 ) → ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 102 | 101 | fmpttd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) : 𝐼 ⟶ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 103 | 20 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∘f ( -g ‘ 𝐺 ) 𝐹 ) ∈ 𝑊 ) |
| 104 | 32 103 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ∈ 𝑊 ) |
| 105 | 2 12 13 104 44 | dprdfcntz | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ran ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 106 | 2 12 13 104 | dprdffsupp | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) finSupp 0 ) |
| 107 | 1 44 47 23 65 102 105 106 | gsumzsubmcl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 Σg ( 𝑦 ∈ 𝐼 ↦ ( if ( 𝑦 = 𝑥 , ( 𝐹 ‘ 𝑥 ) , 0 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 108 | 43 107 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 109 | 11 108 | elind | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 110 | 12 13 14 1 61 | dprddisj | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) |
| 111 | 109 110 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 112 | elsni | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } → ( 𝐹 ‘ 𝑥 ) = 0 ) | |
| 113 | 111 112 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 114 | 113 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 115 | 9 114 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐺 Σg 𝐹 ) = 0 ) → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 116 | 115 | ex | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = 0 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
| 117 | 1 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐼 ∈ V ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
| 118 | 46 22 117 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) |
| 119 | oveq2 | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) | |
| 120 | 119 | eqeq1d | ⊢ ( 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) → ( ( 𝐺 Σg 𝐹 ) = 0 ↔ ( 𝐺 Σg ( 𝑥 ∈ 𝐼 ↦ 0 ) ) = 0 ) ) |
| 121 | 118 120 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) → ( 𝐺 Σg 𝐹 ) = 0 ) ) |
| 122 | 116 121 | impbid | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = 0 ↔ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |