This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdfid.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| dprdfid.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ‘ 𝑋 ) ) | ||
| dprdfid.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | ||
| Assertion | dprdfid | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ∧ ( 𝐺 Σg 𝐹 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | dprdfid.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 6 | dprdfid.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 ‘ 𝑋 ) ) | |
| 7 | dprdfid.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | |
| 8 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 = 𝑋 ) → 𝐴 ∈ ( 𝑆 ‘ 𝑋 ) ) |
| 9 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 = 𝑋 ) → 𝑛 = 𝑋 ) | |
| 10 | 9 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 = 𝑋 ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 11 | 8 10 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 = 𝑋 ) → 𝐴 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 12 | 3 4 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 13 | 12 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑛 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 | 1 | subg0cl | ⊢ ( ( 𝑆 ‘ 𝑛 ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 0 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) ∧ ¬ 𝑛 = 𝑋 ) → 0 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 17 | 11 16 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 18 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 19 | 1 | fvexi | ⊢ 0 ∈ V |
| 20 | 19 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 21 | eqid | ⊢ ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | |
| 22 | 18 20 21 | sniffsupp | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) finSupp 0 ) |
| 23 | 2 3 4 17 22 | dprdwd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) ∈ 𝑊 ) |
| 24 | 7 23 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 26 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 27 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 28 | 3 26 27 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 29 | 2 3 4 24 25 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 30 | 7 | oveq1i | ⊢ ( 𝐹 supp 0 ) = ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) |
| 31 | eldifsni | ⊢ ( 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) → 𝑛 ≠ 𝑋 ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → 𝑛 ≠ 𝑋 ) |
| 33 | ifnefalse | ⊢ ( 𝑛 ≠ 𝑋 → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 0 ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 0 ) |
| 35 | 34 18 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 36 | 30 35 | eqsstrid | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ { 𝑋 } ) |
| 37 | 25 1 28 18 5 29 36 | gsumpt | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 38 | iftrue | ⊢ ( 𝑛 = 𝑋 → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 𝐴 ) | |
| 39 | 7 38 5 6 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝐴 ) |
| 40 | 37 39 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = 𝐴 ) |
| 41 | 24 40 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ∧ ( 𝐺 Σg 𝐹 ) = 𝐴 ) ) |