This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two group sums over a direct product that give the same value are equal as functions. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dprdf11.4 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| Assertion | dprdf11 | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ↔ 𝐹 = 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 6 | dprdf11.4 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | 2 3 4 5 7 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 9 | 8 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 10 | 2 3 4 6 7 | dprdff | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 11 | 10 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn 𝐼 ) |
| 12 | eqfnfv | ⊢ ( ( 𝐹 Fn 𝐼 ∧ 𝐻 Fn 𝐼 ) → ( 𝐹 = 𝐻 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 = 𝐻 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 14 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 15 | 1 2 3 4 5 6 14 | dprdfsub | ⊢ ( 𝜑 → ( ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ∈ 𝑊 ) |
| 17 | 1 2 3 4 16 | dprdfeq0 | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = 0 ↔ ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
| 18 | 15 | simprd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) ) = 0 ↔ ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ) ) |
| 20 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 21 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) | |
| 22 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ V ) | |
| 23 | 8 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 24 | 10 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
| 25 | 20 21 22 23 24 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 26 | 25 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) ) |
| 27 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ∈ V | |
| 28 | 27 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ∈ V |
| 29 | mpteqb | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ) ) | |
| 30 | 28 29 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 31 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 32 | 3 31 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
| 34 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) |
| 36 | 7 1 14 | grpsubeq0 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 37 | 33 34 35 36 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 38 | 37 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) = 0 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 39 | 30 38 | bitrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( -g ‘ 𝐺 ) ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 40 | 26 39 | bitrd | ⊢ ( 𝜑 → ( ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 41 | 17 19 40 | 3bitr3d | ⊢ ( 𝜑 → ( ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) ) |
| 42 | 7 | dprdssv | ⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 43 | 1 2 3 4 5 | eldprdi | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 44 | 42 43 | sselid | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ) |
| 45 | 1 2 3 4 6 | eldprdi | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 46 | 42 45 | sselid | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
| 47 | 7 1 14 | grpsubeq0 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) ) |
| 48 | 32 44 46 47 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐺 Σg 𝐹 ) ( -g ‘ 𝐺 ) ( 𝐺 Σg 𝐻 ) ) = 0 ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ) ) |
| 49 | 13 41 48 | 3bitr2rd | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝐻 ) ↔ 𝐹 = 𝐻 ) ) |