This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgsubcl.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| Assertion | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgsubcl.p | ⊢ − = ( -g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 2 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 5 | simp2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 6 | 4 5 | sseldd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 7 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) | |
| 8 | 4 7 | sseldd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐺 ) ) |
| 9 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 10 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 11 | 2 9 10 1 | grpsubval | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 12 | 6 8 11 | syl2anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 13 | 10 | subginvcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑆 ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑆 ) |
| 15 | 9 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝑆 ) |
| 16 | 14 15 | syld3an3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ 𝑆 ) |
| 17 | 12 16 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) ∈ 𝑆 ) |