This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| eldprdi.3 | |- ( ph -> F e. W ) |
||
| Assertion | dprdfeq0 | |- ( ph -> ( ( G gsum F ) = .0. <-> F = ( x e. I |-> .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | eldprdi.3 | |- ( ph -> F e. W ) |
|
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | 2 3 4 5 6 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 8 | 7 | feqmptd | |- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ ( G gsum F ) = .0. ) -> F = ( x e. I |-> ( F ` x ) ) ) |
| 10 | 2 3 4 5 | dprdfcl | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
| 11 | 10 | adantlr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
| 12 | 3 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> G dom DProd S ) |
| 13 | 4 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> dom S = I ) |
| 14 | simpr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> x e. I ) |
|
| 15 | eqid | |- ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) = ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) |
|
| 16 | 1 2 12 13 14 11 15 | dprdfid | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) e. W /\ ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) = ( F ` x ) ) ) |
| 17 | 16 | simpld | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) e. W ) |
| 18 | 5 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> F e. W ) |
| 19 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 20 | 1 2 12 13 17 18 19 | dprdfsub | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) e. W /\ ( G gsum ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) ) = ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) ) ) |
| 21 | 20 | simprd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) ) = ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) ) |
| 22 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 23 | 22 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> I e. _V ) |
| 24 | fvex | |- ( F ` x ) e. _V |
|
| 25 | 1 | fvexi | |- .0. e. _V |
| 26 | 24 25 | ifex | |- if ( y = x , ( F ` x ) , .0. ) e. _V |
| 27 | 26 | a1i | |- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> if ( y = x , ( F ` x ) , .0. ) e. _V ) |
| 28 | fvexd | |- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> ( F ` y ) e. _V ) |
|
| 29 | eqidd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) = ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) |
|
| 30 | 7 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> F : I --> ( Base ` G ) ) |
| 31 | 30 | feqmptd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> F = ( y e. I |-> ( F ` y ) ) ) |
| 32 | 23 27 28 29 31 | offval2 | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) = ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) |
| 33 | 32 | oveq2d | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) ) = ( G gsum ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) ) |
| 34 | 16 | simprd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) = ( F ` x ) ) |
| 35 | simplr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum F ) = .0. ) |
|
| 36 | 34 35 | oveq12d | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) = ( ( F ` x ) ( -g ` G ) .0. ) ) |
| 37 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 38 | 12 37 | syl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> G e. Grp ) |
| 39 | 30 14 | ffvelcdmd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( Base ` G ) ) |
| 40 | 6 1 19 | grpsubid1 | |- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) ) -> ( ( F ` x ) ( -g ` G ) .0. ) = ( F ` x ) ) |
| 41 | 38 39 40 | syl2anc | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( F ` x ) ( -g ` G ) .0. ) = ( F ` x ) ) |
| 42 | 36 41 | eqtrd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( G gsum ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) ) ( -g ` G ) ( G gsum F ) ) = ( F ` x ) ) |
| 43 | 21 33 42 | 3eqtr3d | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) = ( F ` x ) ) |
| 44 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 45 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 46 | 3 37 45 | 3syl | |- ( ph -> G e. Mnd ) |
| 47 | 46 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> G e. Mnd ) |
| 48 | 6 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 49 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
|
| 50 | 38 48 49 | 3syl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 51 | imassrn | |- ( S " ( I \ { x } ) ) C_ ran S |
|
| 52 | 3 4 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 53 | 52 | ad2antrr | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> S : I --> ( SubGrp ` G ) ) |
| 54 | 53 | frnd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ran S C_ ( SubGrp ` G ) ) |
| 55 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 56 | 50 55 | syl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 57 | 54 56 | sstrd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ran S C_ ~P ( Base ` G ) ) |
| 58 | 51 57 | sstrid | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) ) |
| 59 | sspwuni | |- ( ( S " ( I \ { x } ) ) C_ ~P ( Base ` G ) <-> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
|
| 60 | 58 59 | sylib | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) |
| 61 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 62 | 61 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( S " ( I \ { x } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 63 | 50 60 62 | syl2anc | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 64 | subgsubm | |- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubMnd ` G ) ) |
|
| 65 | 63 64 | syl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubMnd ` G ) ) |
| 66 | oveq1 | |- ( ( F ` x ) = if ( y = x , ( F ` x ) , .0. ) -> ( ( F ` x ) ( -g ` G ) ( F ` y ) ) = ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) |
|
| 67 | 66 | eleq1d | |- ( ( F ` x ) = if ( y = x , ( F ` x ) , .0. ) -> ( ( ( F ` x ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) <-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 68 | oveq1 | |- ( .0. = if ( y = x , ( F ` x ) , .0. ) -> ( .0. ( -g ` G ) ( F ` y ) ) = ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) |
|
| 69 | 68 | eleq1d | |- ( .0. = if ( y = x , ( F ` x ) , .0. ) -> ( ( .0. ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) <-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 70 | simpr | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> y = x ) |
|
| 71 | 70 | fveq2d | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
| 72 | 71 | oveq2d | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( ( F ` x ) ( -g ` G ) ( F ` y ) ) = ( ( F ` x ) ( -g ` G ) ( F ` x ) ) ) |
| 73 | 6 1 19 | grpsubid | |- ( ( G e. Grp /\ ( F ` x ) e. ( Base ` G ) ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) = .0. ) |
| 74 | 38 39 73 | syl2anc | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) = .0. ) |
| 75 | 1 | subg0cl | |- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 76 | 63 75 | syl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 77 | 74 76 | eqeltrd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 78 | 77 | ad2antrr | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( ( F ` x ) ( -g ` G ) ( F ` x ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 79 | 72 78 | eqeltrd | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ y = x ) -> ( ( F ` x ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 80 | 63 | ad2antrr | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) ) |
| 81 | 80 75 | syl | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 82 | 50 61 60 | mrcssidd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> U. ( S " ( I \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 83 | 82 | ad2antrr | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> U. ( S " ( I \ { x } ) ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 84 | 2 12 13 18 | dprdfcl | |- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> ( F ` y ) e. ( S ` y ) ) |
| 85 | 84 | adantr | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( F ` y ) e. ( S ` y ) ) |
| 86 | 53 | ffnd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> S Fn I ) |
| 87 | 86 | ad2antrr | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> S Fn I ) |
| 88 | difssd | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( I \ { x } ) C_ I ) |
|
| 89 | df-ne | |- ( y =/= x <-> -. y = x ) |
|
| 90 | eldifsn | |- ( y e. ( I \ { x } ) <-> ( y e. I /\ y =/= x ) ) |
|
| 91 | 90 | biimpri | |- ( ( y e. I /\ y =/= x ) -> y e. ( I \ { x } ) ) |
| 92 | 89 91 | sylan2br | |- ( ( y e. I /\ -. y = x ) -> y e. ( I \ { x } ) ) |
| 93 | 92 | adantll | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> y e. ( I \ { x } ) ) |
| 94 | fnfvima | |- ( ( S Fn I /\ ( I \ { x } ) C_ I /\ y e. ( I \ { x } ) ) -> ( S ` y ) e. ( S " ( I \ { x } ) ) ) |
|
| 95 | 87 88 93 94 | syl3anc | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( S ` y ) e. ( S " ( I \ { x } ) ) ) |
| 96 | elunii | |- ( ( ( F ` y ) e. ( S ` y ) /\ ( S ` y ) e. ( S " ( I \ { x } ) ) ) -> ( F ` y ) e. U. ( S " ( I \ { x } ) ) ) |
|
| 97 | 85 95 96 | syl2anc | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( F ` y ) e. U. ( S " ( I \ { x } ) ) ) |
| 98 | 83 97 | sseldd | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( F ` y ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 99 | 19 | subgsubcl | |- ( ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) e. ( SubGrp ` G ) /\ .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) /\ ( F ` y ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) -> ( .0. ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 100 | 80 81 98 99 | syl3anc | |- ( ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) /\ -. y = x ) -> ( .0. ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 101 | 67 69 79 100 | ifbothda | |- ( ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) /\ y e. I ) -> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 102 | 101 | fmpttd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) : I --> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 103 | 20 | simpld | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( y e. I |-> if ( y = x , ( F ` x ) , .0. ) ) oF ( -g ` G ) F ) e. W ) |
| 104 | 32 103 | eqeltrrd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) e. W ) |
| 105 | 2 12 13 104 44 | dprdfcntz | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ran ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) C_ ( ( Cntz ` G ) ` ran ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) ) |
| 106 | 2 12 13 104 | dprdffsupp | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) finSupp .0. ) |
| 107 | 1 44 47 23 65 102 105 106 | gsumzsubmcl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( G gsum ( y e. I |-> ( if ( y = x , ( F ` x ) , .0. ) ( -g ` G ) ( F ` y ) ) ) ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 108 | 43 107 | eqeltrrd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) |
| 109 | 11 108 | elind | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) ) |
| 110 | 12 13 14 1 61 | dprddisj | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( ( S ` x ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( S " ( I \ { x } ) ) ) ) = { .0. } ) |
| 111 | 109 110 | eleqtrd | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) e. { .0. } ) |
| 112 | elsni | |- ( ( F ` x ) e. { .0. } -> ( F ` x ) = .0. ) |
|
| 113 | 111 112 | syl | |- ( ( ( ph /\ ( G gsum F ) = .0. ) /\ x e. I ) -> ( F ` x ) = .0. ) |
| 114 | 113 | mpteq2dva | |- ( ( ph /\ ( G gsum F ) = .0. ) -> ( x e. I |-> ( F ` x ) ) = ( x e. I |-> .0. ) ) |
| 115 | 9 114 | eqtrd | |- ( ( ph /\ ( G gsum F ) = .0. ) -> F = ( x e. I |-> .0. ) ) |
| 116 | 115 | ex | |- ( ph -> ( ( G gsum F ) = .0. -> F = ( x e. I |-> .0. ) ) ) |
| 117 | 1 | gsumz | |- ( ( G e. Mnd /\ I e. _V ) -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 118 | 46 22 117 | syl2anc | |- ( ph -> ( G gsum ( x e. I |-> .0. ) ) = .0. ) |
| 119 | oveq2 | |- ( F = ( x e. I |-> .0. ) -> ( G gsum F ) = ( G gsum ( x e. I |-> .0. ) ) ) |
|
| 120 | 119 | eqeq1d | |- ( F = ( x e. I |-> .0. ) -> ( ( G gsum F ) = .0. <-> ( G gsum ( x e. I |-> .0. ) ) = .0. ) ) |
| 121 | 118 120 | syl5ibrcom | |- ( ph -> ( F = ( x e. I |-> .0. ) -> ( G gsum F ) = .0. ) ) |
| 122 | 116 121 | impbid | |- ( ph -> ( ( G gsum F ) = .0. <-> F = ( x e. I |-> .0. ) ) ) |