This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dmdprdsplit . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprdsplitlem.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| dmdprdsplitlem.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| dmdprdsplitlem.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| dmdprdsplitlem.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dmdprdsplitlem.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) | ||
| dmdprdsplitlem.4 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dmdprdsplitlem.5 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ) | ||
| Assertion | dmdprdsplitlem | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdsplitlem.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | dmdprdsplitlem.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | dmdprdsplitlem.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | dmdprdsplitlem.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | dmdprdsplitlem.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐼 ) | |
| 6 | dmdprdsplitlem.4 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 7 | dmdprdsplitlem.5 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ) | |
| 8 | 3 4 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 9 | 8 5 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 10 | fdm | ⊢ ( ( 𝑆 ↾ 𝐴 ) : 𝐴 ⟶ ( SubGrp ‘ 𝐺 ) → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) | |
| 11 | eqid | ⊢ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 12 | 1 11 | eldprd | ⊢ ( dom ( 𝑆 ↾ 𝐴 ) = 𝐴 → ( ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ↔ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 13 | 9 10 12 | 3syl | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd ( 𝑆 ↾ 𝐴 ) ) ↔ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 14 | 7 13 | mpbid | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ∧ ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |
| 15 | 14 | simprd | ⊢ ( 𝜑 → ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) → ∃ 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| 17 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) | |
| 18 | 14 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ) |
| 20 | 9 10 | syl | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) |
| 22 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 24 | 11 19 21 22 23 | dprdff | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 : 𝐴 ⟶ ( Base ‘ 𝐺 ) ) |
| 25 | 24 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 = ( 𝑛 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑛 ) ) ) |
| 26 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐴 ⊆ 𝐼 ) |
| 27 | 26 | resmptd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ↾ 𝐴 ) = ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) |
| 28 | iftrue | ⊢ ( 𝑛 ∈ 𝐴 → if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) = ( 𝑓 ‘ 𝑛 ) ) | |
| 29 | 28 | mpteq2ia | ⊢ ( 𝑛 ∈ 𝐴 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑛 ) ) |
| 30 | 27 29 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ↾ 𝐴 ) = ( 𝑛 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑛 ) ) ) |
| 31 | 25 30 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 = ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ↾ 𝐴 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ↾ 𝐴 ) ) ) |
| 33 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 34 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐺 dom DProd 𝑆 ) |
| 35 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 36 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 37 | 34 35 36 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐺 ∈ Mnd ) |
| 38 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐼 ∈ V ) |
| 40 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → dom 𝑆 = 𝐼 ) |
| 41 | 19 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐴 ) ) |
| 42 | 21 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) → dom ( 𝑆 ↾ 𝐴 ) = 𝐴 ) |
| 43 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) | |
| 44 | 11 41 42 43 | dprdfcl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑛 ) ) |
| 45 | fvres | ⊢ ( 𝑛 ∈ 𝐴 → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑛 ) = ( 𝑆 ‘ 𝑛 ) ) | |
| 46 | 45 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) → ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑛 ) = ( 𝑆 ‘ 𝑛 ) ) |
| 47 | 44 46 | eleqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 48 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 49 | 48 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑛 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 50 | 1 | subg0cl | ⊢ ( ( 𝑆 ‘ 𝑛 ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 51 | 49 50 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) → 0 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ¬ 𝑛 ∈ 𝐴 ) → 0 ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 53 | 47 52 | ifclda | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ 𝐼 ) → if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 54 | 38 | mptexd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ∈ V ) |
| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ∈ V ) |
| 56 | funmpt | ⊢ Fun ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) | |
| 57 | 56 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → Fun ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) |
| 58 | 11 19 21 22 | dprdffsupp | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑓 finSupp 0 ) |
| 59 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) | |
| 60 | eldifn | ⊢ ( 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) → ¬ 𝑛 ∈ ( 𝑓 supp 0 ) ) | |
| 61 | 60 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → ¬ 𝑛 ∈ ( 𝑓 supp 0 ) ) |
| 62 | 59 61 | eldifd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ( 𝐴 ∖ ( 𝑓 supp 0 ) ) ) |
| 63 | ssidd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑓 supp 0 ) ⊆ ( 𝑓 supp 0 ) ) | |
| 64 | 38 5 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 65 | 64 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐴 ∈ V ) |
| 66 | 1 | fvexi | ⊢ 0 ∈ V |
| 67 | 66 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 0 ∈ V ) |
| 68 | 24 63 65 67 | suppssr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 0 ) |
| 69 | 68 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) ∧ 𝑛 ∈ ( 𝐴 ∖ ( 𝑓 supp 0 ) ) ) → ( 𝑓 ‘ 𝑛 ) = 0 ) |
| 70 | 62 69 | syldan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) ∧ 𝑛 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) = 0 ) |
| 71 | 70 | ifeq1da | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) = if ( 𝑛 ∈ 𝐴 , 0 , 0 ) ) |
| 72 | ifid | ⊢ if ( 𝑛 ∈ 𝐴 , 0 , 0 ) = 0 | |
| 73 | 71 72 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ ( 𝑓 supp 0 ) ) ) → if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) = 0 ) |
| 74 | 73 39 | suppss2 | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) |
| 75 | fsuppsssupp | ⊢ ( ( ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ∈ V ∧ Fun ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) ∧ ( 𝑓 finSupp 0 ∧ ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) supp 0 ) ⊆ ( 𝑓 supp 0 ) ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) finSupp 0 ) | |
| 76 | 55 57 58 74 75 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) finSupp 0 ) |
| 77 | 2 34 40 53 76 | dprdwd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ∈ 𝑊 ) |
| 78 | 2 34 40 77 23 | dprdff | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 79 | 2 34 40 77 33 | dprdfcntz | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ran ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) ) |
| 80 | eldifn | ⊢ ( 𝑛 ∈ ( 𝐼 ∖ 𝐴 ) → ¬ 𝑛 ∈ 𝐴 ) | |
| 81 | 80 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ 𝐴 ) ) → ¬ 𝑛 ∈ 𝐴 ) |
| 82 | 81 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ∧ 𝑛 ∈ ( 𝐼 ∖ 𝐴 ) ) → if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) = 0 ) |
| 83 | 82 39 | suppss2 | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) supp 0 ) ⊆ 𝐴 ) |
| 84 | 23 1 33 37 39 78 79 83 76 | gsumzres | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐺 Σg ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ↾ 𝐴 ) ) = ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) ) |
| 85 | 17 32 84 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) ) |
| 86 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐹 ∈ 𝑊 ) |
| 87 | 1 2 34 40 86 77 | dprdf11 | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) ↔ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) ) |
| 88 | 85 87 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ) |
| 89 | 88 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ‘ 𝑋 ) ) |
| 90 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) → 𝑋 ∈ 𝐼 ) | |
| 91 | 90 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → 𝑋 ∈ 𝐼 ) |
| 92 | eleq1 | ⊢ ( 𝑛 = 𝑋 → ( 𝑛 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) | |
| 93 | fveq2 | ⊢ ( 𝑛 = 𝑋 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑋 ) ) | |
| 94 | 92 93 | ifbieq1d | ⊢ ( 𝑛 = 𝑋 → if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) = if ( 𝑋 ∈ 𝐴 , ( 𝑓 ‘ 𝑋 ) , 0 ) ) |
| 95 | eqid | ⊢ ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) | |
| 96 | fvex | ⊢ ( 𝑓 ‘ 𝑛 ) ∈ V | |
| 97 | 96 66 | ifex | ⊢ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ∈ V |
| 98 | 94 95 97 | fvmpt3i | ⊢ ( 𝑋 ∈ 𝐼 → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , ( 𝑓 ‘ 𝑋 ) , 0 ) ) |
| 99 | 91 98 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 ∈ 𝐴 , ( 𝑓 ‘ 𝑛 ) , 0 ) ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐴 , ( 𝑓 ‘ 𝑋 ) , 0 ) ) |
| 100 | eldifn | ⊢ ( 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) → ¬ 𝑋 ∈ 𝐴 ) | |
| 101 | 100 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ¬ 𝑋 ∈ 𝐴 ) |
| 102 | 101 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → if ( 𝑋 ∈ 𝐴 , ( 𝑓 ‘ 𝑋 ) , 0 ) = 0 ) |
| 103 | 89 99 102 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) ∧ ( 𝑓 ∈ { ℎ ∈ X 𝑖 ∈ 𝐴 ( ( 𝑆 ↾ 𝐴 ) ‘ 𝑖 ) ∣ ℎ finSupp 0 } ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) → ( 𝐹 ‘ 𝑋 ) = 0 ) |
| 104 | 16 103 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐼 ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑋 ) = 0 ) |