This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dmdprdsplit . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprdsplitlem.0 | |- .0. = ( 0g ` G ) |
|
| dmdprdsplitlem.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| dmdprdsplitlem.1 | |- ( ph -> G dom DProd S ) |
||
| dmdprdsplitlem.2 | |- ( ph -> dom S = I ) |
||
| dmdprdsplitlem.3 | |- ( ph -> A C_ I ) |
||
| dmdprdsplitlem.4 | |- ( ph -> F e. W ) |
||
| dmdprdsplitlem.5 | |- ( ph -> ( G gsum F ) e. ( G DProd ( S |` A ) ) ) |
||
| Assertion | dmdprdsplitlem | |- ( ( ph /\ X e. ( I \ A ) ) -> ( F ` X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdsplitlem.0 | |- .0. = ( 0g ` G ) |
|
| 2 | dmdprdsplitlem.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | dmdprdsplitlem.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | dmdprdsplitlem.2 | |- ( ph -> dom S = I ) |
|
| 5 | dmdprdsplitlem.3 | |- ( ph -> A C_ I ) |
|
| 6 | dmdprdsplitlem.4 | |- ( ph -> F e. W ) |
|
| 7 | dmdprdsplitlem.5 | |- ( ph -> ( G gsum F ) e. ( G DProd ( S |` A ) ) ) |
|
| 8 | 3 4 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 9 | 8 5 | fssresd | |- ( ph -> ( S |` A ) : A --> ( SubGrp ` G ) ) |
| 10 | fdm | |- ( ( S |` A ) : A --> ( SubGrp ` G ) -> dom ( S |` A ) = A ) |
|
| 11 | eqid | |- { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } = { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } |
|
| 12 | 1 11 | eldprd | |- ( dom ( S |` A ) = A -> ( ( G gsum F ) e. ( G DProd ( S |` A ) ) <-> ( G dom DProd ( S |` A ) /\ E. f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ( G gsum F ) = ( G gsum f ) ) ) ) |
| 13 | 9 10 12 | 3syl | |- ( ph -> ( ( G gsum F ) e. ( G DProd ( S |` A ) ) <-> ( G dom DProd ( S |` A ) /\ E. f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ( G gsum F ) = ( G gsum f ) ) ) ) |
| 14 | 7 13 | mpbid | |- ( ph -> ( G dom DProd ( S |` A ) /\ E. f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ( G gsum F ) = ( G gsum f ) ) ) |
| 15 | 14 | simprd | |- ( ph -> E. f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ( G gsum F ) = ( G gsum f ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ X e. ( I \ A ) ) -> E. f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ( G gsum F ) = ( G gsum f ) ) |
| 17 | simprr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( G gsum F ) = ( G gsum f ) ) |
|
| 18 | 14 | simpld | |- ( ph -> G dom DProd ( S |` A ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> G dom DProd ( S |` A ) ) |
| 20 | 9 10 | syl | |- ( ph -> dom ( S |` A ) = A ) |
| 21 | 20 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> dom ( S |` A ) = A ) |
| 22 | simprl | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ) |
|
| 23 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 24 | 11 19 21 22 23 | dprdff | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> f : A --> ( Base ` G ) ) |
| 25 | 24 | feqmptd | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> f = ( n e. A |-> ( f ` n ) ) ) |
| 26 | 5 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> A C_ I ) |
| 27 | 26 | resmptd | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |` A ) = ( n e. A |-> if ( n e. A , ( f ` n ) , .0. ) ) ) |
| 28 | iftrue | |- ( n e. A -> if ( n e. A , ( f ` n ) , .0. ) = ( f ` n ) ) |
|
| 29 | 28 | mpteq2ia | |- ( n e. A |-> if ( n e. A , ( f ` n ) , .0. ) ) = ( n e. A |-> ( f ` n ) ) |
| 30 | 27 29 | eqtrdi | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |` A ) = ( n e. A |-> ( f ` n ) ) ) |
| 31 | 25 30 | eqtr4d | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> f = ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |` A ) ) |
| 32 | 31 | oveq2d | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( G gsum f ) = ( G gsum ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |` A ) ) ) |
| 33 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 34 | 3 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> G dom DProd S ) |
| 35 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 36 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 37 | 34 35 36 | 3syl | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> G e. Mnd ) |
| 38 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> I e. _V ) |
| 40 | 4 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> dom S = I ) |
| 41 | 19 | adantr | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) -> G dom DProd ( S |` A ) ) |
| 42 | 21 | adantr | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) -> dom ( S |` A ) = A ) |
| 43 | simplrl | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) -> f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } ) |
|
| 44 | 11 41 42 43 | dprdfcl | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) /\ n e. A ) -> ( f ` n ) e. ( ( S |` A ) ` n ) ) |
| 45 | fvres | |- ( n e. A -> ( ( S |` A ) ` n ) = ( S ` n ) ) |
|
| 46 | 45 | adantl | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) /\ n e. A ) -> ( ( S |` A ) ` n ) = ( S ` n ) ) |
| 47 | 44 46 | eleqtrd | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) /\ n e. A ) -> ( f ` n ) e. ( S ` n ) ) |
| 48 | 8 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> S : I --> ( SubGrp ` G ) ) |
| 49 | 48 | ffvelcdmda | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) -> ( S ` n ) e. ( SubGrp ` G ) ) |
| 50 | 1 | subg0cl | |- ( ( S ` n ) e. ( SubGrp ` G ) -> .0. e. ( S ` n ) ) |
| 51 | 49 50 | syl | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) -> .0. e. ( S ` n ) ) |
| 52 | 51 | adantr | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) /\ -. n e. A ) -> .0. e. ( S ` n ) ) |
| 53 | 47 52 | ifclda | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. I ) -> if ( n e. A , ( f ` n ) , .0. ) e. ( S ` n ) ) |
| 54 | 38 | mptexd | |- ( ph -> ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) e. _V ) |
| 55 | 54 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) e. _V ) |
| 56 | funmpt | |- Fun ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |
|
| 57 | 56 | a1i | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> Fun ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) |
| 58 | 11 19 21 22 | dprdffsupp | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> f finSupp .0. ) |
| 59 | simpr | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) /\ n e. A ) -> n e. A ) |
|
| 60 | eldifn | |- ( n e. ( I \ ( f supp .0. ) ) -> -. n e. ( f supp .0. ) ) |
|
| 61 | 60 | ad2antlr | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) /\ n e. A ) -> -. n e. ( f supp .0. ) ) |
| 62 | 59 61 | eldifd | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) /\ n e. A ) -> n e. ( A \ ( f supp .0. ) ) ) |
| 63 | ssidd | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( f supp .0. ) C_ ( f supp .0. ) ) |
|
| 64 | 38 5 | ssexd | |- ( ph -> A e. _V ) |
| 65 | 64 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> A e. _V ) |
| 66 | 1 | fvexi | |- .0. e. _V |
| 67 | 66 | a1i | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> .0. e. _V ) |
| 68 | 24 63 65 67 | suppssr | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( A \ ( f supp .0. ) ) ) -> ( f ` n ) = .0. ) |
| 69 | 68 | adantlr | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) /\ n e. ( A \ ( f supp .0. ) ) ) -> ( f ` n ) = .0. ) |
| 70 | 62 69 | syldan | |- ( ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) /\ n e. A ) -> ( f ` n ) = .0. ) |
| 71 | 70 | ifeq1da | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) -> if ( n e. A , ( f ` n ) , .0. ) = if ( n e. A , .0. , .0. ) ) |
| 72 | ifid | |- if ( n e. A , .0. , .0. ) = .0. |
|
| 73 | 71 72 | eqtrdi | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ ( f supp .0. ) ) ) -> if ( n e. A , ( f ` n ) , .0. ) = .0. ) |
| 74 | 73 39 | suppss2 | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) supp .0. ) C_ ( f supp .0. ) ) |
| 75 | fsuppsssupp | |- ( ( ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) e. _V /\ Fun ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) /\ ( f finSupp .0. /\ ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) supp .0. ) C_ ( f supp .0. ) ) ) -> ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) finSupp .0. ) |
|
| 76 | 55 57 58 74 75 | syl22anc | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) finSupp .0. ) |
| 77 | 2 34 40 53 76 | dprdwd | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) e. W ) |
| 78 | 2 34 40 77 23 | dprdff | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) : I --> ( Base ` G ) ) |
| 79 | 2 34 40 77 33 | dprdfcntz | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ran ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) C_ ( ( Cntz ` G ) ` ran ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) ) |
| 80 | eldifn | |- ( n e. ( I \ A ) -> -. n e. A ) |
|
| 81 | 80 | adantl | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ A ) ) -> -. n e. A ) |
| 82 | 81 | iffalsed | |- ( ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) /\ n e. ( I \ A ) ) -> if ( n e. A , ( f ` n ) , .0. ) = .0. ) |
| 83 | 82 39 | suppss2 | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) supp .0. ) C_ A ) |
| 84 | 23 1 33 37 39 78 79 83 76 | gsumzres | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( G gsum ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |` A ) ) = ( G gsum ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) ) |
| 85 | 17 32 84 | 3eqtrd | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( G gsum F ) = ( G gsum ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) ) |
| 86 | 6 | ad2antrr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> F e. W ) |
| 87 | 1 2 34 40 86 77 | dprdf11 | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( ( G gsum F ) = ( G gsum ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) <-> F = ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) ) |
| 88 | 85 87 | mpbid | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> F = ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ) |
| 89 | 88 | fveq1d | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( F ` X ) = ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ` X ) ) |
| 90 | eldifi | |- ( X e. ( I \ A ) -> X e. I ) |
|
| 91 | 90 | ad2antlr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> X e. I ) |
| 92 | eleq1 | |- ( n = X -> ( n e. A <-> X e. A ) ) |
|
| 93 | fveq2 | |- ( n = X -> ( f ` n ) = ( f ` X ) ) |
|
| 94 | 92 93 | ifbieq1d | |- ( n = X -> if ( n e. A , ( f ` n ) , .0. ) = if ( X e. A , ( f ` X ) , .0. ) ) |
| 95 | eqid | |- ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) = ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) |
|
| 96 | fvex | |- ( f ` n ) e. _V |
|
| 97 | 96 66 | ifex | |- if ( n e. A , ( f ` n ) , .0. ) e. _V |
| 98 | 94 95 97 | fvmpt3i | |- ( X e. I -> ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ` X ) = if ( X e. A , ( f ` X ) , .0. ) ) |
| 99 | 91 98 | syl | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( ( n e. I |-> if ( n e. A , ( f ` n ) , .0. ) ) ` X ) = if ( X e. A , ( f ` X ) , .0. ) ) |
| 100 | eldifn | |- ( X e. ( I \ A ) -> -. X e. A ) |
|
| 101 | 100 | ad2antlr | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> -. X e. A ) |
| 102 | 101 | iffalsed | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> if ( X e. A , ( f ` X ) , .0. ) = .0. ) |
| 103 | 89 99 102 | 3eqtrd | |- ( ( ( ph /\ X e. ( I \ A ) ) /\ ( f e. { h e. X_ i e. A ( ( S |` A ) ` i ) | h finSupp .0. } /\ ( G gsum F ) = ( G gsum f ) ) ) -> ( F ` X ) = .0. ) |
| 104 | 16 103 | rexlimddv | |- ( ( ph /\ X e. ( I \ A ) ) -> ( F ` X ) = .0. ) |