This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz2.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdcntz2.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdcntz2.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) | ||
| dprdcntz2.d | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) | ||
| dprdcntz2.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| dprdcntz2.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | dprdcntz2 | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz2.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdcntz2.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdcntz2.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐼 ) | |
| 4 | dprdcntz2.d | ⊢ ( 𝜑 → 𝐷 ⊆ 𝐼 ) | |
| 5 | dprdcntz2.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 6 | dprdcntz2.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 7 | 1 2 3 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐶 ) ) |
| 9 | dmres | ⊢ dom ( 𝑆 ↾ 𝐶 ) = ( 𝐶 ∩ dom 𝑆 ) | |
| 10 | 3 2 | sseqtrrd | ⊢ ( 𝜑 → 𝐶 ⊆ dom 𝑆 ) |
| 11 | dfss2 | ⊢ ( 𝐶 ⊆ dom 𝑆 ↔ ( 𝐶 ∩ dom 𝑆 ) = 𝐶 ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝜑 → ( 𝐶 ∩ dom 𝑆 ) = 𝐶 ) |
| 13 | 9 12 | eqtrid | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐶 ) = 𝐶 ) |
| 14 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 17 | 16 | dprdssv | ⊢ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) |
| 18 | 16 6 | cntzsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 | 15 17 18 | sylancl | ⊢ ( 𝜑 → ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 | fvres | ⊢ ( 𝑥 ∈ 𝐶 → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 22 | 1 2 4 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) ) |
| 25 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑆 ↾ 𝐷 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 27 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐼 ) |
| 28 | 1 2 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 30 | 27 29 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 31 | dmres | ⊢ dom ( 𝑆 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝑆 ) | |
| 32 | 4 2 | sseqtrrd | ⊢ ( 𝜑 → 𝐷 ⊆ dom 𝑆 ) |
| 33 | dfss2 | ⊢ ( 𝐷 ⊆ dom 𝑆 ↔ ( 𝐷 ∩ dom 𝑆 ) = 𝐷 ) | |
| 34 | 32 33 | sylib | ⊢ ( 𝜑 → ( 𝐷 ∩ dom 𝑆 ) = 𝐷 ) |
| 35 | 31 34 | eqtrid | ⊢ ( 𝜑 → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → dom ( 𝑆 ↾ 𝐷 ) = 𝐷 ) |
| 37 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐺 ∈ Grp ) |
| 38 | 16 | subgss | ⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 39 | 30 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 40 | 16 6 | cntzsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑆 ‘ 𝑥 ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 41 | 37 39 40 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 42 | fvres | ⊢ ( 𝑦 ∈ 𝐷 → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) | |
| 43 | 42 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 44 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝐺 dom DProd 𝑆 ) |
| 45 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → dom 𝑆 = 𝐼 ) |
| 46 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐷 ⊆ 𝐼 ) |
| 47 | 46 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐼 ) |
| 48 | 27 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑥 ∈ 𝐼 ) |
| 49 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 50 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 51 | elin | ⊢ ( 𝑥 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ) | |
| 52 | 5 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐶 ∩ 𝐷 ) ↔ 𝑥 ∈ ∅ ) ) |
| 53 | 51 52 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ↔ 𝑥 ∈ ∅ ) ) |
| 54 | 50 53 | mtbiri | ⊢ ( 𝜑 → ¬ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ) |
| 55 | imnan | ⊢ ( ( 𝑥 ∈ 𝐶 → ¬ 𝑥 ∈ 𝐷 ) ↔ ¬ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐷 ) ) | |
| 56 | 54 55 | sylibr | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 → ¬ 𝑥 ∈ 𝐷 ) ) |
| 57 | 56 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ¬ 𝑥 ∈ 𝐷 ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ¬ 𝑥 ∈ 𝐷 ) |
| 59 | nelne2 | ⊢ ( ( 𝑦 ∈ 𝐷 ∧ ¬ 𝑥 ∈ 𝐷 ) → 𝑦 ≠ 𝑥 ) | |
| 60 | 49 58 59 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ≠ 𝑥 ) |
| 61 | 44 45 47 48 60 6 | dprdcntz | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
| 62 | 43 61 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑆 ↾ 𝐷 ) ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
| 63 | 24 36 41 62 | dprdlub | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑥 ) ) ) |
| 64 | 6 26 30 63 | cntzrecd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 65 | 21 64 | eqsstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑆 ↾ 𝐶 ) ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |
| 66 | 8 13 19 65 | dprdlub | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ 𝐶 ) ) ⊆ ( 𝑍 ‘ ( 𝐺 DProd ( 𝑆 ↾ 𝐷 ) ) ) ) |