This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | ||
| cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| cygzn.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cygzn.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| cygzn.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| cygzn.g | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) | ||
| cygzn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | ||
| cygzn.f | ⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) | ||
| Assertion | cygznlem3 | ⊢ ( 𝜑 → 𝐺 ≃𝑔 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | |
| 3 | cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | cygzn.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 5 | cygzn.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 6 | cygzn.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 7 | cygzn.g | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) | |
| 8 | cygzn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | |
| 9 | cygzn.f | ⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 15 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
| 17 | 14 16 | ifclda | ⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
| 18 | 2 17 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 19 | 3 | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 20 | crngring | ⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) | |
| 21 | ringgrp | ⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) | |
| 22 | 18 19 20 21 | 4syl | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 23 | cyggrp | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) | |
| 24 | 7 23 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 25 | 1 2 3 4 5 6 7 8 9 | cygznlem2a | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) |
| 26 | 3 10 5 | znzrhfo | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 27 | 18 26 | syl | ⊢ ( 𝜑 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 28 | foelrn | ⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ) | |
| 29 | 27 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ) |
| 30 | foelrn | ⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) | |
| 31 | 27 30 | sylan | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) |
| 32 | 29 31 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) |
| 33 | reeanv | ⊢ ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ↔ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) | |
| 34 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
| 35 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) | |
| 36 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑗 ∈ ℤ ) | |
| 37 | 1 4 6 | iscyggen | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 38 | 37 | simplbi | ⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
| 39 | 8 38 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑋 ∈ 𝐵 ) |
| 41 | 1 4 12 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
| 42 | 34 35 36 40 41 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
| 43 | 18 19 | syl | ⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
| 44 | 5 | zrhrhm | ⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
| 45 | rhmghm | ⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) | |
| 46 | 43 20 44 45 | 4syl | ⊢ ( 𝜑 → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
| 48 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 49 | zringplusg | ⊢ + = ( +g ‘ ℤring ) | |
| 50 | 48 49 11 | ghmlin | ⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
| 51 | 47 35 36 50 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
| 52 | 51 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 53 | zaddcl | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) | |
| 54 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
| 55 | 53 54 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
| 56 | 52 55 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
| 57 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑖 · 𝑋 ) ) |
| 58 | 57 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑖 · 𝑋 ) ) |
| 59 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
| 60 | 59 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
| 61 | 58 60 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
| 62 | 42 56 61 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 63 | oveq12 | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) | |
| 64 | 63 | fveq2d | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 65 | fveq2 | ⊢ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ) | |
| 66 | fveq2 | ⊢ ( 𝑏 = ( 𝐿 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) | |
| 67 | 65 66 | oveqan12d | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 68 | 64 67 | eqeq12d | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) ) |
| 69 | 62 68 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 70 | 69 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 71 | 33 70 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 72 | 71 | imp | ⊢ ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 73 | 32 72 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 74 | 10 1 11 12 22 24 25 73 | isghmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ) |
| 75 | 58 60 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) ) |
| 76 | 1 2 3 4 5 6 7 8 | cygznlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) ) |
| 77 | 75 76 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ↔ ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
| 78 | 77 | biimpd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
| 79 | 65 66 | eqeqan12d | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 80 | eqeq12 | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝑎 = 𝑏 ↔ ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) | |
| 81 | 79 80 | imbi12d | ⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 82 | 78 81 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 83 | 82 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 84 | 33 83 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 85 | 84 | imp | ⊢ ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 86 | 32 85 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 87 | 86 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 88 | dff13 | ⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 89 | 25 87 88 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ) |
| 90 | 1 4 6 | iscyggen2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) ) |
| 91 | 24 90 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) ) |
| 92 | 8 91 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) |
| 93 | 92 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) |
| 94 | oveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) | |
| 95 | 94 | eqeq2d | ⊢ ( 𝑛 = 𝑗 → ( 𝑧 = ( 𝑛 · 𝑋 ) ↔ 𝑧 = ( 𝑗 · 𝑋 ) ) ) |
| 96 | 95 | cbvrexvw | ⊢ ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) ) |
| 97 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 98 | fof | ⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) | |
| 99 | 97 98 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 100 | 99 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ 𝑗 ) ∈ ( Base ‘ 𝑌 ) ) |
| 101 | 59 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
| 102 | 101 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
| 103 | fveq2 | ⊢ ( 𝑎 = ( 𝐿 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) | |
| 104 | 103 | rspceeqv | ⊢ ( ( ( 𝐿 ‘ 𝑗 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 105 | 100 102 104 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 106 | eqeq1 | ⊢ ( 𝑧 = ( 𝑗 · 𝑋 ) → ( 𝑧 = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 107 | 106 | rexbidv | ⊢ ( 𝑧 = ( 𝑗 · 𝑋 ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 108 | 105 107 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 109 | 108 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 110 | 96 109 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 111 | 110 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 112 | 93 111 | mpd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) |
| 113 | dffo3 | ⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 114 | 25 112 113 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) |
| 115 | df-f1o | ⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ∧ 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) ) | |
| 116 | 89 114 115 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) |
| 117 | 10 1 | isgim | ⊢ ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ↔ ( 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ∧ 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) ) |
| 118 | 74 116 117 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ) |
| 119 | brgici | ⊢ ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) → 𝑌 ≃𝑔 𝐺 ) | |
| 120 | gicsym | ⊢ ( 𝑌 ≃𝑔 𝐺 → 𝐺 ≃𝑔 𝑌 ) | |
| 121 | 118 119 120 | 3syl | ⊢ ( 𝜑 → 𝐺 ≃𝑔 𝑌 ) |